Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Neurovasc Res ; 19(3): 344-357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36089794

RESUMO

BACKGROUND: Alzheimer's Disease (AD) impairs memory and cognitive functions in the geriatric population and is characterized by intracellular deposition of neurofibrillary tangles, extracellular deposition of amyloid plaques, and neuronal degeneration. Literature suggests that latent viral infections in the brain act as prions and promote neurodegeneration. Memantine possesses both anti-viral and N-methyl-D-aspartate (NMDA) receptor antagonistic activity. OBJECTIVES: This research was designed to evaluate the efficacy of antiviral agents, especially valacyclovir, a prodrug of acyclovir in ameliorating the pathology of AD based on the presumption that anti-viral agents targeting the Herpes Simplex Virus (HSV) can have a protective effect on neurodegenerative diseases like Alzheimer's disease. METHODS: Thus, we evaluated acyclovir's potential activity by in-silico computational docking studies against acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and beta-secretase 1 (BACE-1). These findings were further evaluated by in-vivo scopolamine-induced cognitive impairment in rats. Two doses of valacyclovir, a prodrug of acyclovir (100 mg/kg and 150 mg/kg orally) were tested. RESULTS: Genetic Optimisation for Ligand Docking scores and fitness scores of acyclovir were comparable to donepezil. Valacyclovir improved neurobehavioral markers. It inhibited AChE and BuChE (p<0.001) enzymes. It also possessed disease-modifying efficacy as it decreased the levels of BACE-1 (p<0.001), amyloid beta 1-42 (p<0.001), amyloid beta 1-40 (p<0.001), phosphorylatedtau (p<0.001), neprilysin (p<0.01), and insulin-degrading enzyme. It ameliorated neuroinflammation through decreased levels of tumour necrosis factor α (p<0.001), nuclear factor-kappa B (p<0.001), interleukin 6 (p<0.001), interleukin 1 beta (p<0.001), and interferon-gamma (p<0.001). It also maintained synaptic plasticity and consolidated memory. Histopathology showed that valacyclovir could restore cellular density and also preserve the dentate gyrus. CONCLUSION: Valacyclovir showed comparable activity to donepezil and thus can be further researched for the treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Pró-Fármacos , Idoso , Ratos , Humanos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Valaciclovir/uso terapêutico , Butirilcolinesterase/uso terapêutico , Escopolamina/uso terapêutico , Acetilcolinesterase , Donepezila/uso terapêutico , Pró-Fármacos/uso terapêutico , Aciclovir/uso terapêutico , Antivirais/uso terapêutico
2.
Behav Brain Res ; 356: 18-40, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30118774

RESUMO

Alzheimer's disease (AD) is an enervating and chronic progressive neurodegenerative disorder, occurring frequently in the elderly and adversely affecting intellectual capabilities and the cognitive processes. Bergenin possesses efficacious antioxidant, antiulcerogenic, anti-HIV, hepatoprotective, neuroprotective, anti-inflammatory and immunomodulatory activity along with antinociceptive effect and wound healing properties. Previous studies have shown that bergenin has in vitro bovine adrenal tyrosine hydroxylase inhibitory activity, mushroom tyrosinase inhibitory activities, ß-secretase (BACE-1) enzyme inhibitory activity and prevented neuronal death in the primary culture of rat cortical neurons. Protein tyrosine phosphatase-1B (PTP1B) is an intriguing target for anticancer and antidiabetic drugs and has recently been implicated to act as a positive regulator of neuroinflammation. Bergenin is also found to inhibit human protein tyrosine phosphatase-1B (hPTP1B) in vitro. Thus, bergenin was screened by molecular docking study using GOLD suite (version 5.2), CCDC for predicting its activity against targets of AD management like acetylcholinesterase (AChE) (1B41), butyrylcholinesterase (BuChE) (1P0I), Tau protein kinase 1 (GSK-3ß) (1J1B), BACE-1 (1FKN) wherein the GOLD score and fitness of bergenin were comparable to those of standard drugs like donepezil, galanthamine, physostigmine, etc. Bergenin demonstrated dose-dependent inhibition of both AChE and BuChE in vitro and found to be safe up to 50 µM when screened in vitro on SH-SY5Y cell lines by cytotoxicity studies using MTT and Alamar blue assays. It also led to dose-dependent prevention of NMDA induced toxicity in these cells. Pretreatment with bergenin (14 days) in rats at three dose levels (20, 40 and 80 mg/kg; p.o.) significantly (p < 0.01) and dose-dependently alleviated amnesia induced by scopolamine (2 mg/kg, i.p.). The therapeutic effect of bergenin supplementation for 28 days, at three dose levels, was also evaluated in streptozotocin (3 mg/kg, ICV, unilateral) induced AD model in Wistar rats using Morris water maze and Y maze on 7th, 14th, 21st and 28th days. STZ caused significant (p < 0.001) cognitive impairment and cholinergic deficit and increased oxidative stress in rats. Bergenin could significantly ameliorate STZ induced behavioral deficits, inhibit the AChE and BuChE activity in parallel with an increase in the diminished GSH levels in a dose-dependent fashion. The histopathological investigations were also supportive of this datum. The bergenin treatment at 80 mg/kg led to significant (p < 0.05) abatement of the raised Aß-1-42 levels and alleviated the perturbed p- tau levels leading to significantly low (p < 0.01) levels of p-tau in brain homogenates of rats as compared to ICV STZ injected rats. In conclusion, the observed effects might be attributed to the cholinesterase inhibitory activity of bergenin coupled with its antioxidant effect, anti-inflammatory activity and reduction of Aß-1-42 and p-tau levels which could have collectively helped in the attenuation of cognitive deficits. The current findings of the study are indicative of the promising preventive and ameliorative potential of bergenin in the management of AD through multiple targets.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Benzopiranos/metabolismo , Benzopiranos/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/patologia , Amnésia/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Butirilcolinesterase/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Simulação de Acoplamento Molecular/métodos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Estreptozocina/farmacologia
3.
Eur J Med Chem ; 140: 1-19, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28918096

RESUMO

Aurora kinase belongs to serine/threonine kinase family which controls cell division. Therapeutic inhibition of Aurora kinase showed great promise as probable anticancer regime because of its important role during cell division. Here, in this review, we have carried out exhaustive study of various synthetic molecules reported as Aurora kinase inhibitors and developed as lead molecule at various stages of clinical trials from its discovery in 1995 to till date. We reported details of small molecules, specifically inhibiting all 3 types of Aurora kinases, which includes extensive literature search in various database like various scientific journals, patents, scifinder and PubMed database, internet resources, books, etc. IC50 values of tumor growth inhibition, in-vitro and in-vivo activity along with clinical trial data. Here, we took efforts to describe essence of Aurora kinase and its inhibition which could be used to develop anti-mitotic drug for the treatment of cancer. In conclusion, we also discuss future perspectives for development of novel inhibitors and their scope in drug development process.


Assuntos
Antineoplásicos/farmacologia , Aurora Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antineoplásicos/química , Aurora Quinases/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaios Clínicos como Assunto , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Bibliotecas de Moléculas Pequenas/química
4.
Eur J Pharm Sci ; 79: 1-12, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26343315

RESUMO

Aurora-B kinase plays a crucial role in cell cycle events and is identified as an important factor in regulation of spindle check point assembly. Thus, it can be proved as an important target in the field of oncology. 3D-QSAR model was generated using 54 molecules reported in literature containing thienopyrimidine and thienopyridine as scaffolds. All molecules were aligned using Distill function in Sybyl X1.2. This generated best model of CoMFA-RG (Region focusing) and CoMSIA were statistically significant with correlation coefficient r(2)ncv of 0.97, for both & Leave one out coefficient (LOO) q(2) of 0.70 and 0.72, respectively. Best CoMSIA model was built up using various combination of descriptors and proved statistical significant among all models. Best CoMFA-RG and CoMSIA models were validated by 12 test set molecules giving satisfactory prediction (r(2)pred) values of 0.86 and 0.88, respectively. External test set validation was performed using 20 molecules and satisfactory prediction of their biological activity was found. Active compounds were docked on protein (PDB ID: 4C2V) by GOLD module and revealed important interactions with amino acids at ATP-binding region. These data explored insight requirements for Aurora-B inhibition which might be fruitful for understanding mechanisms with kinase ligand interactions.


Assuntos
Aurora Quinase B/antagonistas & inibidores , Pirimidinas/farmacologia , Tienopiridinas/farmacologia , Humanos , Modelos Químicos , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA