Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 170, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013380

RESUMO

Ultra-intense MeV photon and neutron beams are indispensable tools in many research fields such as nuclear, atomic and material science as well as in medical and biophysical applications. For applications in laboratory nuclear astrophysics, neutron fluxes in excess of 1021 n/(cm2 s) are required. Such ultra-high fluxes are unattainable with existing conventional reactor- and accelerator-based facilities. Currently discussed concepts for generating high-flux neutron beams are based on ultra-high power multi-petawatt lasers operating around 1023 W/cm2 intensities. Here, we present an efficient concept for generating γ and neutron beams based on enhanced production of direct laser-accelerated electrons in relativistic laser interactions with a long-scale near critical density plasma at 1019 W/cm2 intensity. Experimental insights in the laser-driven generation of ultra-intense, well-directed multi-MeV beams of photons more than 1012 ph/sr and an ultra-high intense neutron source with greater than 6 × 1010 neutrons per shot are presented. More than 1.4% laser-to-gamma conversion efficiency above 10 MeV and 0.05% laser-to-neutron conversion efficiency were recorded, already at moderate relativistic laser intensities and ps pulse duration. This approach promises a strong boost of the diagnostic potential of existing kJ PW laser systems used for Inertial Confinement Fusion (ICF) research.

2.
Phys Rev Lett ; 111(23): 235006, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24476284

RESUMO

An experimental program was designed to study the most important issues of laser-plasma interaction physics in the context of the shock ignition scheme. In the new experiments presented in this Letter, a combination of kilojoule and short laser pulses was used to study the laser-plasma coupling at high laser intensities for a large range of electron densities and plasma profiles. We find that the backscatter is dominated by stimulated Brillouin scattering with stimulated Raman scattering staying at a limited level. This is in agreement with past experiments using long pulses but laser intensities limited to 2×10(15) W/cm2, or short pulses with intensities up to 5×10(16) W/cm2 as well as with 2D particle-in-cell simulations.

3.
Phys Rev Lett ; 102(19): 195005, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19518967

RESUMO

This Letter presents first experimental results of the laser imprint reduction in fusion scale plasmas using a low-density foam layer. The experiments were conducted on the LIL facility at the energy level of 12 kJ with millimeter-size plasmas, reproducing the conditions of the initial interaction phase in the direct-drive scheme. The results include the generation of a supersonic ionization wave in the foam and the reduction of the initial laser fluctuations after propagation through 500 mum of foam with limited levels of stimulated Brillouin and Raman scattering. The smoothing mechanisms are analyzed and explained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA