Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(40): 14929-14937, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37737106

RESUMO

It has been proposed to use magnesium oxide (MgO) to separate carbon dioxide directly from the atmosphere at the gigaton level. We show experimental results on MgO single crystals reacting with the atmosphere for longer (decades) and shorter (days to months) periods with the goal of gauging reaction rates. Here, we find a substantial slowdown of an initially fast reaction as a result of mineral armoring by reaction products (surface passivation). In short-term experiments, we observe fast hydroxylation, carbonation, and formation of amorphous hydrated magnesium carbonate at early stages, leading to the formation of crystalline hydrated Mg carbonates. The preferential location of Mg carbonates along the atomic steps on the crystal surface of MgO indicates the importance of the reactive site density for carbonation kinetics. The analysis of 27-year-old single-crystal MgO samples demonstrates that the thickness of the reacted layer is limited to ∼1.5 µm on average, which is thinner than expected and indicates surface passivation. Thus, if MgO is to be employed for direct air capture of CO2, surface passivation must be circumvented.


Assuntos
Dióxido de Carbono , Óxido de Magnésio , Óxido de Magnésio/química , Dióxido de Carbono/química , Minerais , Carbonatos/química
2.
RSC Adv ; 13(29): 19856-19861, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37409041

RESUMO

Stabilizing cubic polymorph of Li7La3Zr2O12 at low temperatures is challenging and currently limited to mono- or dual-ion doping with aliovalent ions. Herein, a high-entropy strategy at the Zr sites was deployed to stabilize the cubic phase and lower the lithium diffusion activation energy, evident from the static 7Li and MAS 6Li NMR spectra.

3.
ChemSusChem ; 14(21): 4613-4614, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34661970

RESUMO

Invited for this month's cover are the groups of Prof. Vijay Ramani and Prof. Rohan Mishra at Washington University in St. Louis and their collaborators at Oak Ridge National Laboratory. The Full Paper itself is available at 10.1002/cssc.202101341.

4.
ChemSusChem ; 14(21): 4680-4689, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34383996

RESUMO

Clusters of nitrogen- and carbon-coordinated transition metals dispersed in a carbon matrix (e. g., Fe-N-C) have emerged as an inexpensive class of electrocatalysts for the oxygen reduction reaction (ORR). Here, it was shown that optimizing the interaction between the nitrogen-coordinated transition metal clusters embedded in a more stable and corrosion-resistant carbide matrix yielded an ORR electrocatalyst with enhanced activity and stability compared to Fe-N-C catalysts. Utilizing first-principles calculations, an electrostatics-based descriptor of catalytic activity was identified, and nitrogen-coordinated iron (FeN4 ) clusters embedded in a TiC matrix were predicted to be an efficient platinum-group metal (PGM)-free ORR electrocatalyst. Guided by theory, selected catalyst formulations were synthesized, and it was demonstrated that the experimentally observed trends in activity fell exactly in line with the descriptor-derived theoretical predictions. The Fe-N-TiC catalyst exhibited enhanced activity (20 %) and durability (3.5-fold improvement) compared to a traditional Fe-N-C catalyst. It was posited that the electrostatics-based descriptor provides a powerful platform for the design of active and stable PGM-free electrocatalysts and heterogenous single-atom catalysts for other electrochemical reactions.

5.
ChemSusChem ; 13(15): 3825-3834, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32460419

RESUMO

High-capacity metal oxide conversion anodes for lithium-ion batteries (LIBs) are primarily limited by their poor reversibility and cycling stability. In this study, a promising approach has been developed to improve the electrochemical performance of a MoO2 anode by direct fluorination of the prelithiated MoO2 . The fluorinated anode contains a mixture of crystalline MoO2 and amorphous molybdenum oxyfluoride phases, as determined from a suite of characterization methods including X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy, and scanning transmission electron microscopy. Electrochemical measurements indicate that fluorination facilitates the conversion reaction kinetics, which leads to increased capacity, higher coulombic efficiency, and better cycling stability as compared to the nonfluorinated samples. These results suggest that fluorination after prelithiation not only favors formation of the oxyfluoride phase but also improves the lithium-ion diffusivity and reversibility of the conversion reaction, making it an attractive approach to address the problems of conversion electrodes. These findings provide a new route to design high-capacity negative electrodes for LIBs.

6.
Adv Sci (Weinh) ; 7(1): 1901606, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31921553

RESUMO

Ultrathin epitaxial films of ferromagnetic insulators (FMIs) with Curie temperatures near room temperature are critically needed for use in dissipationless quantum computation and spintronic devices. However, such materials are extremely rare. Here, a room-temperature FMI is achieved in ultrathin La0.9Ba0.1MnO3 films grown on SrTiO3 substrates via an interface proximity effect. Detailed scanning transmission electron microscopy images clearly demonstrate that MnO6 octahedral rotations in La0.9Ba0.1MnO3 close to the interface are strongly suppressed. As determined from in situ X-ray photoemission spectroscopy, O K-edge X-ray absorption spectroscopy, and density functional theory, the realization of the FMI state arises from a reduction of Mn eg bandwidth caused by the quenched MnO6 octahedral rotations. The emerging FMI state in La0.9Ba0.1MnO3 together with necessary coherent interface achieved with the perovskite substrate gives very high potential for future high performance electronic devices.

7.
J Phys Chem Lett ; 11(3): 952-959, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31945295

RESUMO

In this Letter, we used fluorescence microscopy to image the reversible transformation of individual CsPbCl3 nanocrystals to CsPbBr3, which enables us to quantify heterogeneity in reactivity among hundreds of nanocrystals prepared within the same batch. We observed a wide distribution of waiting times for individual nanocrystals to react as has been seen previously for cation exchange and ion intercalation. However, a significant difference for this reaction is that the switching times for changes in fluorescence intensity are dependent on the concentration of substitutional halide ions in solution (i.e., Br- or Cl-). On the basis of the high solid-state miscibility between CsPbCl3 and CsPbBr3, we develop a model in which the activation energy for anion exchange depends on the density of exchanged ions in the nanocrystal. The heterogeneity in reaction kinetics observed among individual nanocrystals limits the compositional uniformity that can be achieved in luminescent CsPbCl3-xBrx nanocrystals prepared by anion exchange.

8.
Phys Rev B ; 101(22)2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38487734

RESUMO

Skyrmions hold great promise for low-energy consumption and stable high density information storage, and stabilization of the skyrmion lattice (SkX) phase at or above room temperature is greatly desired for practical use. The topological Hall effect can be used to identify candidate systems above room temperature, a challenging regime for direct observation by Lorentz electron microscopy. Atomically ordered FeGe thin films are grown epitaxially on Ge(111) substrates with ~ 4 % tensile strain. Magnetic characterization reveals enhancement of Curie temperature to 350 K due to strain, well above the bulk value of 278 K. Strong topological Hall effect was observed between 10 K and 330 K, with a significant increase in magnitude observed at 330 K. The increase in magnitude occurs just below the Curie temperature, a similar relative temperature position as the onset of Skx phase in bulk FeGe. The results suggest that strained FeGe films may host a SkX phase above room temperature when significant tensile strain is applied.

9.
Adv Mater ; 31(4): e1805047, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30506822

RESUMO

To evaluate the role of planar defects in lead-halide perovskites-cheap, versatile semiconducting materials-it is critical to examine their structure, including defects, at the atomic scale and develop a detailed understanding of their impact on electronic properties. In this study, postsynthesis nanocrystal fusion, aberration-corrected scanning transmission electron microscopy, and first-principles calculations are combined to study the nature of different planar defects formed in CsPbBr3 nanocrystals. Two types of prevalent planar defects from atomic resolution imaging are observed: previously unreported Br-rich [001](210)∑5 grain boundaries (GBs) and Ruddlesden-Popper (RP) planar faults. The first-principles calculations reveal that neither of these planar faults induce deep defect levels, but their Br-deficient counterparts do. It is found that the ∑5 GB repels electrons and attracts holes, similar to an n-p-n junction, and the RP planar defects repel both electrons and holes, similar to a semiconductor-insulator-semiconductor junction. Finally, the potential applications of these findings and their implications to understand the planar defects in organic-inorganic lead-halide perovskites that have led to solar cells with extremely high photoconversion efficiencies are discussed.

10.
ACS Nano ; 12(8): 7682-7689, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30052026

RESUMO

The Si-compatibility of perovskite heterostructures offers the intriguing possibility of producing oxide-based quantum well (QW) optoelectronic devices for use in Si photonics. While the SrTiO3/LaAlO3 (STO/LAO) system has been studied extensively in the hopes of using the interfacial two-dimensional electron gas in Si-integrated electronics, the potential to exploit its giant 2.4 eV conduction band offset in oxide-based QW optoelectronic devices has so far been largely ignored. Here, we demonstrate room-temperature intersubband absorption in STO/LAO QW heterostructures at energies on the order of hundreds of meV, including at energies approaching the critically important telecom wavelength of 1.55 µm. We demonstrate the ability to control the absorption energy by changing the width of the STO well layers by a single unit cell and present theory showing good agreement with experiment. A detailed structural and chemical analysis of the samples via scanning transmission electron microscopy and electron energy loss spectroscopy is presented. This work represents an important proof-of-concept for the use of transition metal oxide QWs in Si-compatible optoelectronic devices.

11.
Nanotechnology ; 29(25): 255303, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29616980

RESUMO

Semiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore's law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion. These phenomena are visualized in real-time with atomic resolution. We further implement active feedback control based on real-time image analytics to automatically control the e-beam motion, enabling shape control and providing a pathway for atom-by-atom correction of fabricated structures in the near future. These observations open a new epoch for atom-by-atom manufacturing in bulk, the long-held dream of nanotechnology.

12.
Phys Rev Lett ; 119(17): 177603, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29219470

RESUMO

The recent discovery of "polar metals" with ferroelectriclike displacements offers the promise of designing ferroelectrics with tunable energy gaps by inducing controlled metal-insulator transitions. Here we employ first-principles calculations to design a metallic polar superlattice from nonpolar metal components and show that controlled intermixing can lead to a true insulating ferroelectric with a tunable band gap. We consider a 2/2 superlattice made of two centrosymmetric metallic oxides, La_{0.75}Sr_{0.25}MnO_{3} and LaNiO_{3}, and show that ferroelectriclike displacements are induced. The ferroelectriclike distortion is found to be strongly dependent on the carrier concentration (Sr content). Further, we show that a metal-to-insulator (MI) transition is feasible in this system via disproportionation of the Ni sites. Such a disproportionation and, hence, a MI transition can be driven by intermixing of transition metal ions between Mn and Ni layers. As a result, the energy gap of the resulting ferroelectric can be tuned by varying the degree of intermixing in the experimental fabrication method.

13.
J Chem Theory Comput ; 13(11): 5604-5609, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-28933845

RESUMO

Strong electronic correlations, interfaces, and defects, and disorder each individually challenge the theoretical methods for predictions of materials properties. These challenges are all simultaneously present in complex transition-metal-oxide interfaces and superlattices, which are known to exhibit unique and unusual properties caused by multiple coupled degrees of freedom and strong electronic correlations. Here we show that ab initio quantum Monte Carlo (QMC) solutions of the many-electron problem are now possible for the full complexity of these systems. Within a single nonempirical theoretical approach, we unambiguously establish the site-specific stability of oxygen vacancies in the (LaFeO3)2/(SrFeO3) superlattice, accounting for experimental data, and predict their migration pathways. QMC calculations are now capable of playing a major role in the elucidation of many-body phenomena in complex oxides previously out of reach of first-principles theories.

14.
Adv Mater ; 29(36)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28737233

RESUMO

Structural defects often dominate the electronic- and thermal-transport properties of thermoelectric (TE) materials and are thus a central ingredient for improving their performance. However, understanding the relationship between TE performance and the disordered atomic defects that are generally inherent in nanostructured alloys remains a challenge. Herein, the use of scanning transmission electron microscopy to visualize atomic defects directly is described and disordered atomic-scale defects are demonstrated to be responsible for the enhancement of TE performance in nanostructured Ti1-x Hfx NiSn1-y Sby half-Heusler alloys. The disordered defects at all atomic sites induce a local composition fluctuation, effectively scattering phonons and improving the power factor. It is observed that the Ni interstitial and Ti,Hf/Sn antisite defects are collectively formed, leading to significant atomic disorder that causes the additional reduction of lattice thermal conductivity. The Ti1-x Hfx NiSn1-y Sby alloys containing inherent atomic-scale defect disorders are produced in one hour by a newly developed process of temperature-regulated rapid solidification followed by sintering. The collective atomic-scale defect disorder improves the zT to 1.09 ± 0.12 at 800 K for the Ti0.5 Hf0.5 NiSn0.98 Sb0.02 alloy. These results provide a promising avenue for improving the TE performance of state-of-the-art materials.

15.
ACS Nano ; 11(7): 7060-7073, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28686418

RESUMO

Single crystals of the van der Waals layered ferrielectric material CuInP2S6 spontaneously phase separate when synthesized with Cu deficiency. Here we identify a route to form and tune intralayer heterostructures between the corresponding ferrielectric (CuInP2S6) and paraelectric (In4/3P2S6) phases through control of chemical phase separation. We conclusively demonstrate that Cu-deficient Cu1-xIn1+x/3P2S6 forms a single phase at high temperature. We also identify the mechanism by which the phase separation proceeds upon cooling. Above 500 K both Cu+ and In3+ become mobile, while P2S64- anions maintain their structure. We therefore propose that this transition can be understood as eutectic melting on the cation sublattice. Such a model suggests that the transition temperature for the melting process is relatively low because it requires only a partial reorganization of the crystal lattice. As a result, varying the cooling rate through the phase transition controls the lateral extent of chemical domains over several decades in size. At the fastest cooling rate, the dimensional confinement of the ferrielectric CuInP2S6 phase to nanoscale dimensions suppresses ferrielectric ordering due to the intrinsic ferroelectric size effect. Intralayer heterostructures can be formed, destroyed, and re-formed by thermal cycling, thus enabling the possibility of finely tuned ferroic structures that can potentially be optimized for specific device architectures.

16.
ACS Nano ; 11(7): 6942-6949, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28602092

RESUMO

Vacancy dynamics and ordering underpin the electrochemical functionality of complex oxides and strongly couple to their physical properties. In the field of the epitaxial thin films, where connection between chemistry and film properties can be most clearly revealed, the effects related to oxygen vacancies are attracting increasing attention. In this article, we report a direct, real-time, atomic level observation of the formation of oxygen vacancies in the epitaxial LaCoO3 thin films and heterostructures under the influence of the electron beam utilizing scanning transmission electron microscopy (STEM). In the case of LaCoO3/SrTiO3 superlattice, the formation of the oxygen vacancies is shown to produce quantifiable changes in the interatomic distances, as well as qualitative changes in the symmetry of the Co sites manifested as off-center displacements. The onset of these changes was observed in both the [100]pc and [110]pc orientations in real time. Additionally, annular bright field images directly show the formation of oxygen vacancy channels along [110]pc direction. In the case of 15 u.c. LaCoO3 thin film, we observe the sequence of events during beam-induced formation of oxygen vacancy ordered phases and find them consistent with similar processes in the bulk. Moreover, we record the dynamics of the nucleation, growth, and defect interaction at the atomic scale as these transformations happen. These results demonstrate that we can track dynamic oxygen vacancy behavior with STEM, generating atomic-level quantitative information on phase transformation and oxygen diffusion.

17.
Ultramicroscopy ; 181: 1-7, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28478345

RESUMO

Octahedral tilt behavior is increasingly recognized as an important contributing factor to the physical behavior of perovskite oxide materials and especially their interfaces, necessitating the development of high-resolution methods of tilt mapping. There are currently two major approaches for quantitative imaging of tilts in scanning transmission electron microscopy (STEM), bright field (BF) and annular bright field (ABF). In this paper, we show that BF STEM can be reliably used for measurements of oxygen octahedral tilts. While optimal conditions for BF imaging are more restricted with respect to sample thickness and defocus, we find that BF imaging with an aberration-corrected microscope with the accelerating voltage of 300kV gives us the most accurate quantitative measurement of the oxygen column positions. Using the tilted perovskite structure of BiFeO3 (BFO) as our test sample, we simulate BF and ABF images in a wide range of conditions, identifying the optimal imaging conditions for each mode. We show that unlike ABF imaging, BF imaging remains directly quantitatively interpretable for a wide range of the specimen mistilt, suggesting that it should be preferable to the ABF STEM imaging for quantitative structure determination.

18.
Nano Lett ; 17(1): 486-493, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27935317

RESUMO

A wealth of fascinating phenomena have been discovered at the BiFeO3 domain walls, examples such as domain wall conductivity, photovoltaic effects, and magnetoelectric coupling. Thus, the ability to precisely control the domain structures and accurately study their switching behaviors is critical to realize the next generation of novel devices based on domain wall functionalities. In this work, the introduction of a dielectric layer leads to the tunability of the depolarization field both in the multilayers and superlattices, which provides a novel approach to control the domain patterns of BiFeO3 films. Moreover, we are able to study the switching behavior of the first time obtained periodic 109° stripe domains with a thick bottom electrode. Besides, the precise controlling of pure 71° and 109° periodic stripe domain walls enable us to make a clear demonstration that the exchange bias in the ferromagnet/BiFeO3 system originates from 109° domain walls. Our findings provide future directions to study the room temperature electric field control of exchange bias and open a new pathway to explore the room temperature multiferroic vortices in the BiFeO3 system.

19.
Sci Rep ; 6: 38724, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929103

RESUMO

For epitaxial films, a critical thickness (tc) can create a phenomenological interface between a strained bottom layer and a relaxed top layer. Here, we present an experimental report of how the tc in BiFeO3 thin films acts as a boundary to determine the crystalline phase, ferroelectricity, and piezoelectricity in 60 nm thick BiFeO3/SrRuO3/SrTiO3 substrate. We found larger Fe cation displacement of the relaxed layer than that of strained layer. In the time-resolved X-ray microdiffraction analyses, the piezoelectric response of the BiFeO3 film was resolved into a strained layer with an extremely low piezoelectric coefficient of 2.4 pm/V and a relaxed layer with a piezoelectric coefficient of 32 pm/V. The difference in the Fe displacements between the strained and relaxed layers is in good agreement with the differences in the piezoelectric coefficient due to the electromechanical coupling.

20.
J Am Chem Soc ; 138(49): 16130-16139, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960312

RESUMO

Supported gold (Au) nanocatalysts hold great promise for heterogeneous catalysis; however, their practical application is greatly hampered by poor thermodynamic stability. Herein, a general synthetic strategy is reported where discrete metal nanoparticles are made resistant to sintering, preserving their catalytic activities in high-temperature oxidation processes. Taking advantage of the unique coating chemistry of dopamine, sacrificial carbon layers are constructed on the material surface, stabilizing the supported catalyst. Upon annealing at high temperature under an inert atmosphere, the interactions between support and metal nanoparticle are dramatically enhanced, while the sacrificial carbon layers can be subsequently removed through oxidative calcination in air. Owing to the improved metal-support contact and strengthened electronic interactions, the resulting Au nanocatalysts are resistant to sintering and exhibit excellent durability for catalytic combustion of propylene at elevated temperatures. Moreover, the facile synthetic strategy can be extended to the stabilization of other supported catalysts on a broad range of supports, providing a general approach to enhancing the thermal stability and sintering resistance of supported nanocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA