Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
1.
Cell ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39321801

RESUMO

Pharmaceuticals can directly inhibit the growth of gut bacteria, but the degree to which such interactions manifest in complex community settings is an open question. Here, we compared the effects of 30 drugs on a 32-species synthetic community with their effects on each community member in isolation. While most individual drug-species interactions remained the same in the community context, communal behaviors emerged in 26% of all tested cases. Cross-protection during which drug-sensitive species were protected in community was 6 times more frequent than cross-sensitization, the converse phenomenon. Cross-protection decreased and cross-sensitization increased at higher drug concentrations, suggesting that the resilience of microbial communities can collapse when perturbations get stronger. By metabolically profiling drug-treated communities, we showed that both drug biotransformation and bioaccumulation contribute mechanistically to communal protection. As a proof of principle, we molecularly dissected a prominent case: species expressing specific nitroreductases degraded niclosamide, thereby protecting both themselves and sensitive community members.

2.
JAMA Pediatr ; 178(10): 985-995, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39102225

RESUMO

Importance: The effects of probiotic interventions on colonization with resistant bacteria and early microbiome development in preterm infants remain to be clarified. Objective: To examine the efficacy of Bifidobacterium longum subsp infantis, Bifidobacterium animalis subsp lactis (BB-12), and Lactobacillus acidophilus (La-5) probiotics to prevent colonization with multidrug-resistant organisms or highly epidemic bacteria (MDRO+) and to shape the microbiome of preterm infants toward the eubiotic state of healthy full-term infants. Design, Setting, and Participants: The multicenter, double-blinded, placebo-controlled, group sequential, phase 3 Priming Immunity at the Beginning of Life (PRIMAL) randomized clinical trial, conducted from April 2018 to June 2020, included infants with gestational age of 28 to 32 weeks at 18 German neonatal units. Data analyses were conducted from March 2020 to August 2023. Intervention: A total of 28 days of multistrain probiotics diluted in human milk/formula starting within the first 72 hours of life. Main Outcomes and Measures: Colonization with MDRO+ at day 30 of life (primary end point), late-onset sepsis and severe gastrointestinal complication (safety end points), and gut dysbiosis, ie, deviations from the microbiome of healthy, term infants (eubiosis score) based on 16-subunit ribosomal RNA and metagenomic sequencing. Results: Among the 643 infants randomized until the stop of recruitment based on interim results, 618 (median [IQR] gestational age, 31.0 [29.7-32.1] weeks; 333 male [53.9%]; mean [SD] birth weight, 1502 [369] g) had follow-up at day 30. The interim analysis with all available data from 219 infants revealed MDRO+ colonization in 43 of 115 infants (37.4%) in the probiotics group and in 39 of 104 infants (37.5%) in the control group (adjusted risk ratio, 0.99; 95% CI, 0.54-1.81; P = .97). Safety outcomes were similar in both groups, ie, late-onset sepsis (probiotics group: 8 of 316 infants [2.5%]; control group: 12 of 322 infants [3.7%]) and severe gastrointestinal complications (probiotics group: 6 of 316 infants [1.9%]; control group: 7 of 322 infants [2.2%]). The probiotics group had higher eubiosis scores than the control group at the genus level (254 vs 258 infants; median scores, 0.47 vs 0.41; odds ratio [OR], 1.07; 95% CI, 1.02-1.13) and species level (96 vs 83 infants; median scores, 0.87 vs 0.59; OR, 1.28; 95% CI, 1.19-1.38). Environmental uptake of the B infantis probiotic strain in the control group was common (41 of 84 [49%]), which was highly variable across sites and particularly occurred in infants with a sibling who was treated with probiotics. Conclusions and Relevance: Multistrain probiotics did not reduce the incidence of MDRO+ colonization at day 30 of life in preterm infants but modulated their microbiome toward eubiosis. Trial Registration: German Clinical Trials Register: DRKS00013197.


Assuntos
Disbiose , Microbioma Gastrointestinal , Recém-Nascido Prematuro , Probióticos , Humanos , Probióticos/uso terapêutico , Recém-Nascido , Disbiose/prevenção & controle , Método Duplo-Cego , Masculino , Feminino , Bifidobacterium , Lactobacillus , Doenças do Prematuro/prevenção & controle , Doenças do Prematuro/microbiologia
3.
Nat Commun ; 15(1): 7563, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39214983

RESUMO

Small open reading frames (smORFs) shorter than 100 codons are widespread and perform essential roles in microorganisms, where they encode proteins active in several cell functions, including signal pathways, stress response, and antibacterial activities. However, the ecology, distribution and role of small proteins in the global microbiome remain unknown. Here, we construct a global microbial smORFs catalog (GMSC) derived from 63,410 publicly available metagenomes across 75 distinct habitats and 87,920 high-quality isolate genomes. GMSC contains 965 million non-redundant smORFs with comprehensive annotations. We find that archaea harbor more smORFs proportionally than bacteria. We moreover provide a tool called GMSC-mapper to identify and annotate small proteins from microbial (meta)genomes. Overall, this publicly-available resource demonstrates the immense and underexplored diversity of small proteins.


Assuntos
Archaea , Bactérias , Metagenoma , Microbiota , Fases de Leitura Aberta , Microbiota/genética , Fases de Leitura Aberta/genética , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Metagenoma/genética , Archaea/genética , Archaea/metabolismo , Archaea/classificação , Anotação de Sequência Molecular , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
Sci Adv ; 10(33): eadn3316, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39141729

RESUMO

Genetic variations are instrumental for unraveling phage evolution and deciphering their functional implications. Here, we explore the underlying fine-scale genetic variations in the gut phageome, especially structural variations (SVs). By using virome-enriched long-read metagenomic sequencing across 91 individuals, we identified a total of 14,438 nonredundant phage SVs and revealed their prevalence within the human gut phageome. These SVs are mainly enriched in genes involved in recombination, DNA methylation, and antibiotic resistance. Notably, a substantial fraction of phage SV sequences share close homology with bacterial fragments, with most SVs enriched for horizontal gene transfer (HGT) mechanism. Further investigations showed that these SV sequences were genetic exchanged between specific phage-bacteria pairs, particularly between phages and their respective bacterial hosts. Temperate phages exhibit a higher frequency of genetic exchange with bacterial chromosomes and then virulent phages. Collectively, our findings provide insights into the genetic landscape of the human gut phageome.


Assuntos
Bactérias , Bacteriófagos , Microbioma Gastrointestinal , Transferência Genética Horizontal , Bacteriófagos/genética , Humanos , Microbioma Gastrointestinal/genética , Bactérias/virologia , Bactérias/genética , Metagenômica/métodos , Variação Genética , Viroma/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala
5.
Cell ; 187(14): 3761-3778.e16, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38843834

RESUMO

Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine-learning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo. A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.


Assuntos
Peptídeos Antimicrobianos , Aprendizado de Máquina , Microbiota , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/genética , Humanos , Animais , Antibacterianos/farmacologia , Camundongos , Metagenoma , Bactérias/efeitos dos fármacos , Bactérias/genética , Microbioma Gastrointestinal/efeitos dos fármacos
6.
Nature ; 629(8012): 652-659, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693261

RESUMO

The gut microbiota operates at the interface of host-environment interactions to influence human homoeostasis and metabolic networks1-4. Environmental factors that unbalance gut microbial ecosystems can therefore shape physiological and disease-associated responses across somatic tissues5-9. However, the systemic impact of the gut microbiome on the germline-and consequently on the F1 offspring it gives rise to-is unexplored10. Here we show that the gut microbiota act as a key interface between paternal preconception environment and intergenerational health in mice. Perturbations to the gut microbiota of prospective fathers increase the probability of their offspring presenting with low birth weight, severe growth restriction and premature mortality. Transmission of disease risk occurs via the germline and is provoked by pervasive gut microbiome perturbations, including non-absorbable antibiotics or osmotic laxatives, but is rescued by restoring the paternal microbiota before conception. This effect is linked with a dynamic response to induced dysbiosis in the male reproductive system, including impaired leptin signalling, altered testicular metabolite profiles and remapped small RNA payloads in sperm. As a result, dysbiotic fathers trigger an elevated risk of in utero placental insufficiency, revealing a placental origin of mammalian intergenerational effects. Our study defines a regulatory 'gut-germline axis' in males, which is sensitive to environmental exposures and programmes offspring fitness through impacting placenta function.


Assuntos
Suscetibilidade a Doenças , Disbiose , Pai , Microbioma Gastrointestinal , Insuficiência Placentária , Lesões Pré-Natais , Espermatozoides , Animais , Feminino , Masculino , Camundongos , Gravidez , Disbiose/complicações , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Placenta/fisiopatologia , Insuficiência Placentária/etiologia , Insuficiência Placentária/metabolismo , Insuficiência Placentária/fisiopatologia , Resultado da Gravidez , Lesões Pré-Natais/etiologia , Lesões Pré-Natais/metabolismo , Lesões Pré-Natais/fisiopatologia , Transdução de Sinais , Espermatozoides/metabolismo , Testículo/metabolismo , Testículo/fisiopatologia , Suscetibilidade a Doenças/etiologia
7.
Haematologica ; 109(10): 3237-3250, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38721725

RESUMO

The gut microbiota plays a critical role in maintaining a healthy human body and its dysregulation is associated with various diseases. In this study, we investigated the influence of gut microbiome diversity on the development of chronic lymphocytic leukemia (CLL). Analysis of stool samples from 59 CLL patients revealed individual and heterogeneous microbiome compositions, but allowed for grouping of patients according to their microbiome diversity. Interestingly, CLL patients with lower microbiome diversity and an enrichment of bacteria linked to poor health suffered from a more advanced or aggressive form of CLL. In the Eµ-TCL1 mouse model of CLL, we observed a faster course of disease when mice were housed in high hygiene conditions. Shotgun DNA sequencing of fecal samples showed that this was associated with a lower microbiome diversity which was dominated by Mucispirillum and Parabacteroides genera in comparison to mice kept under lower hygiene conditions. In conclusion, we applied taxonomic microbiome analyses to demonstrate a link between gut microbiome diversity and the clinical course of CLL in humans, as well as the development of CLL in mice. Our novel data serve as a basis for further investigations to decipher the pathological and mechanistic role of intestinal microbiota in CLL development.


Assuntos
Microbioma Gastrointestinal , Leucemia Linfocítica Crônica de Células B , Leucemia Linfocítica Crônica de Células B/microbiologia , Leucemia Linfocítica Crônica de Células B/patologia , Animais , Humanos , Camundongos , Feminino , Modelos Animais de Doenças , Masculino , Biodiversidade , Fezes/microbiologia , Pessoa de Meia-Idade , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Idoso
8.
Nucleic Acids Res ; 52(W1): W78-W82, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38613393

RESUMO

The Interactive Tree Of Life (https://itol.embl.de) is an online tool for the management, display, annotation and manipulation of phylogenetic and other trees. It is freely available and open to everyone. iTOL version 6 introduces a modernized and completely rewritten user interface, together with numerous new features. A new dataset type has been introduced (colored/labeled ranges), greatly upgrading the functionality of the previous simple colored range annotation function. Additional annotation options have been implemented for several existing dataset types. Dataset template files now support simple assignment of annotations to multiple tree nodes through substring matching, including full regular expression support. Node metadata handling has been greatly extended with novel display and exporting options, and it can now be edited interactively or bulk updated through annotation files. Tree labels can be displayed using multiple simultaneous font styles, with precise positioning, sizing and styling of each individual label part. Various bulk label editing functions have been implemented, simplifying large scale changes of all tree node labels. iTOL's automatic taxonomy assignment functions now support trees based on the Genome Taxonomy Database (GTDB), in addition to the NCBI taxonomy. The functionality of the optional user account pages has been expanded, simplifying the management, navigation and sharing of projects and trees. iTOL currently handles more than one and a half million trees from >130 000 individual user accounts.


Assuntos
Filogenia , Software , Anotação de Sequência Molecular , Internet , Interface Usuário-Computador , Bases de Dados Genéticas
9.
J Hepatol ; 81(2): 345-359, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38552880

RESUMO

The rising prevalence of liver diseases related to obesity and excessive use of alcohol is fuelling an increasing demand for accurate biomarkers aimed at community screening, diagnosis of steatohepatitis and significant fibrosis, monitoring, prognostication and prediction of treatment efficacy. Breakthroughs in omics methodologies and the power of bioinformatics have created an excellent opportunity to apply technological advances to clinical needs, for instance in the development of precision biomarkers for personalised medicine. Via omics technologies, biological processes from the genes to circulating protein, as well as the microbiome - including bacteria, viruses and fungi, can be investigated on an axis. However, there are important barriers to omics-based biomarker discovery and validation, including the use of semi-quantitative measurements from untargeted platforms, which may exhibit high analytical, inter- and intra-individual variance. Standardising methods and the need to validate them across diverse populations presents a challenge, partly due to disease complexity and the dynamic nature of biomarker expression at different disease stages. Lack of validity causes lost opportunities when studies fail to provide the knowledge needed for regulatory approvals, all of which contributes to a delayed translation of these discoveries into clinical practice. While no omics-based biomarkers have matured to clinical implementation, the extent of data generated has enabled the hypothesis-free discovery of a plethora of candidate biomarkers that warrant further validation. To explore the many opportunities of omics technologies, hepatologists need detailed knowledge of commonalities and differences between the various omics layers, and both the barriers to and advantages of these approaches.


Assuntos
Biomarcadores , Humanos , Biomarcadores/análise , Biomarcadores/metabolismo , Fígado Gorduroso/diagnóstico , Fígado Gorduroso/genética , Proteômica/métodos , Metabolômica/métodos , Genômica/métodos
10.
Aliment Pharmacol Ther ; 59(7): 877-888, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38414095

RESUMO

BACKGROUND: Patients with cirrhosis are susceptible to develop bacterial infections that trigger acute decompensation (AD) and acute-on-chronic liver failure (ACLF). Infections with multidrug-resistant organisms (MDRO) are associated with deleterious outcome. MDRO colonisation frequently proceeds MDRO infections and antibiotic therapy has been associated with MDRO colonisation. AIM: The aim of the study was to assess the influence of non-antibiotic medication contributing to MDRO colonisation. METHODS: Three hundred twenty-four patients with AD and ACLF admitted to the ICU of Frankfurt University Hospital with MDRO screening were included. Regression models were performed to identify drugs associated with MDRO colonisation. Another cohort (n = 129) from Barcelona was included to validate. A third multi-centre cohort (n = 203) with metagenomic sequencing data of stool was included to detect antibiotic resistance genes. RESULTS: A total of 97 patients (30%) were identified to have MDRO colonisation and 35 of them (11%) developed MDRO infection. Patients with MDRO colonisation had significantly higher risk of MDRO infection than those without (p = 0.0098). Apart from antibiotic therapy (odds ratio (OR) 2.91, 95%-confidence interval (CI) 1.82-4.93, p < 0.0001), terlipressin therapy in the previous 14 days was the only independent covariate associated with MDRO colonisation in both cohorts, the overall (OR 9.47, 95%-CI 2.96-30.23, p < 0.0001) and after propensity score matching (OR 5.30, 95%-CI 1.22-23.03, p = 0.011). In the second cohort, prior terlipressin therapy was a risk factor for MDRO colonisation (OR 2.49, 95% CI 0.911-6.823, p = 0.075) and associated with risk of MDRO infection during follow-up (p = 0.017). The validation cohort demonstrated that antibiotic inactivation genes were significantly associated with terlipressin administration (p = 0.001). CONCLUSIONS: Our study reports an increased risk of MDRO colonisation in patients with AD or ACLF, who recently received terlipressin therapy, while other commonly prescribed non-antibiotic co-medications had negligible influence. Future prospective trials are needed to confirm these results.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Humanos , Terlipressina/efeitos adversos , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/efeitos adversos , Fatores de Risco , Cirrose Hepática/tratamento farmacológico , Bactérias
11.
Adv Sci (Weinh) ; 11(13): e2305818, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240578

RESUMO

Current metagenome assembled human gut phage catalogs contained mostly fragmented genomes. Here, comprehensive gut virome detection procedure is developed involving virus-like particle (VLP) enrichment from ≈500 g feces and combined sequencing of short- and long-read. Applied to 135 samples, a Chinese Gut Virome Catalog (CHGV) is assembled consisting of 21,499 non-redundant viral operational taxonomic units (vOTUs) that are significantly longer than those obtained by short-read sequencing and contained ≈35% (7675) complete genomes, which is ≈nine times more than those in the Gut Virome Database (GVD, ≈4%, 1,443). Interestingly, the majority (≈60%, 13,356) of the CHGV vOTUs are obtained by either long-read or hybrid assemblies, with little overlap with those assembled from only the short-read data. With this dataset, vast diversity of the gut virome is elucidated, including the identification of 32% (6,962) novel vOTUs compare to public gut virome databases, dozens of phages that are more prevalent than the crAssphages and/or Gubaphages, and several viral clades that are more diverse than the two. Finally, the functional capacities are also characterized of the CHGV encoded proteins and constructed a viral-host interaction network to facilitate future research and applications.


Assuntos
Bacteriófagos , Humanos , Bacteriófagos/genética , Análise de Sequência , Genoma Viral/genética , Metagenoma/genética , Fezes
12.
Nat Protoc ; 19(3): 668-699, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38092943

RESUMO

The human gut microbiome is a key contributor to health, and its perturbations are linked to many diseases. Small-molecule xenobiotics such as drugs, chemical pollutants and food additives can alter the microbiota composition and are now recognized as one of the main factors underlying microbiome diversity. Mapping the effects of such compounds on the gut microbiome is challenging because of the complexity of the community, anaerobic growth requirements of individual species and the large number of interactions that need to be quantitatively assessed. High-throughput screening setups offer a promising solution for probing the direct inhibitory effects of hundreds of xenobiotics on tens of anaerobic gut bacteria. When automated, such assays enable the cost-effective investigation of a wide range of compound-microbe combinations. We have developed an experimental setup and protocol that enables testing of up to 5,000 compounds on a target gut species under strict anaerobic conditions within 5 d. In addition, with minor modifications to the protocol, drug effects can be tested on microbial communities either assembled from isolates or obtained from stool samples. Experience in working in an anaerobic chamber, especially in performing delicate work with thick chamber gloves, is required for implementing this protocol. We anticipate that this protocol will accelerate the study of interactions between small molecules and the gut microbiome and provide a deeper understanding of this microbial ecosystem, which is intimately intertwined with human health.


Assuntos
Ecossistema , Ensaios de Triagem em Larga Escala , Humanos , Anaerobiose , Bactérias , Bactérias Anaeróbias
13.
Nucleic Acids Res ; 52(D1): D777-D783, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37897342

RESUMO

Meta'omic data on microbial diversity and function accrue exponentially in public repositories, but derived information is often siloed according to data type, study or sampled microbial environment. Here we present SPIRE, a Searchable Planetary-scale mIcrobiome REsource that integrates various consistently processed metagenome-derived microbial data modalities across habitats, geography and phylogeny. SPIRE encompasses 99 146 metagenomic samples from 739 studies covering a wide array of microbial environments and augmented with manually-curated contextual data. Across a total metagenomic assembly of 16 Tbp, SPIRE comprises 35 billion predicted protein sequences and 1.16 million newly constructed metagenome-assembled genomes (MAGs) of medium or high quality. Beyond mapping to the high-quality genome reference provided by proGenomes3 (http://progenomes.embl.de), these novel MAGs form 92 134 novel species-level clusters, the majority of which are unclassified at species level using current tools. SPIRE enables taxonomic profiling of these species clusters via an updated, custom mOTUs database (https://motu-tool.org/) and includes several layers of functional annotation, as well as crosslinks to several (micro-)biological databases. The resource is accessible, searchable and browsable via http://spire.embl.de.


Assuntos
Bases de Dados Factuais , Metagenoma , Microbiota , Metagenômica , Microbiota/genética
14.
Nature ; 626(7998): 377-384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109938

RESUMO

Many of the Earth's microbes remain uncultured and understudied, limiting our understanding of the functional and evolutionary aspects of their genetic material, which remain largely overlooked in most metagenomic studies1. Here we analysed 149,842 environmental genomes from multiple habitats2-6 and compiled a curated catalogue of 404,085 functionally and evolutionarily significant novel (FESNov) gene families exclusive to uncultivated prokaryotic taxa. All FESNov families span multiple species, exhibit strong signals of purifying selection and qualify as new orthologous groups, thus nearly tripling the number of bacterial and archaeal gene families described to date. The FESNov catalogue is enriched in clade-specific traits, including 1,034 novel families that can distinguish entire uncultivated phyla, classes and orders, probably representing synapomorphies that facilitated their evolutionary divergence. Using genomic context analysis and structural alignments we predicted functional associations for 32.4% of FESNov families, including 4,349 high-confidence associations with important biological processes. These predictions provide a valuable hypothesis-driven framework that we used for experimental validatation of a new gene family involved in cell motility and a novel set of antimicrobial peptides. We also demonstrate that the relative abundance profiles of novel families can discriminate between environments and clinical conditions, leading to the discovery of potentially new biomarkers associated with colorectal cancer. We expect this work to enhance future metagenomics studies and expand our knowledge of the genetic repertory of uncultivated organisms.


Assuntos
Archaea , Bactérias , Ecossistema , Evolução Molecular , Genes Arqueais , Genes Bacterianos , Genômica , Conhecimento , Peptídeos Antimicrobianos/genética , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biomarcadores , Movimento Celular/genética , Neoplasias Colorretais/genética , Genômica/métodos , Genômica/tendências , Metagenômica/tendências , Família Multigênica , Filogenia , Reprodutibilidade dos Testes
15.
bioRxiv ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37693522

RESUMO

Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine learning-based approach to predict prokaryotic antimicrobial peptides (AMPs) by leveraging a vast dataset of 63,410 metagenomes and 87,920 microbial genomes. This led to the creation of AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, the majority of which were previously unknown. We observed that AMP production varies by habitat, with animal-associated samples displaying the highest proportion of AMPs compared to other habitats. Furthermore, within different human-associated microbiota, strain-level differences were evident. To validate our predictions, we synthesized and experimentally tested 50 AMPs, demonstrating their efficacy against clinically relevant drug-resistant pathogens both in vitro and in vivo. These AMPs exhibited antibacterial activity by targeting the bacterial membrane. Additionally, AMPSphere provides valuable insights into the evolutionary origins of peptides. In conclusion, our approach identified AMP sequences within prokaryotic microbiomes, opening up new avenues for the discovery of antibiotics.

16.
Nat Commun ; 14(1): 5843, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730687

RESUMO

The host-microbiota co-metabolite trimethylamine N-oxide (TMAO) is linked to increased cardiovascular risk but how its circulating levels are regulated remains unclear. We applied "explainable" machine learning, univariate, multivariate and mediation analyses of fasting plasma TMAO concentration and a multitude of phenotypes in 1,741 adult Europeans of the MetaCardis study. Here we show that next to age, kidney function is the primary variable predicting circulating TMAO, with microbiota composition and diet playing minor, albeit significant, roles. Mediation analysis suggests a causal relationship between TMAO and kidney function that we corroborate in preclinical models where TMAO exposure increases kidney scarring. Consistent with our findings, patients receiving glucose-lowering drugs with reno-protective properties have significantly lower circulating TMAO when compared to propensity-score matched control individuals. Our analyses uncover a bidirectional relationship between kidney function and TMAO that can potentially be modified by reno-protective anti-diabetic drugs and suggest a clinically actionable intervention for decreasing TMAO-associated excess cardiovascular risk.


Assuntos
Endocrinologia , Metilaminas , Adulto , Humanos , Causalidade , Rim
17.
Microbiome ; 11(1): 179, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37563687

RESUMO

BACKGROUND: The fungal component of the human gut microbiome, also known as the mycobiome, plays a vital role in intestinal ecology and human health. However, the overall structure of the gut mycobiome as well as the inter-individual variations in fungal composition remains largely unknown. In this study, we collected a total of 3363 fungal sequencing samples from 16 cohorts across three continents, including 572 newly profiled samples from China. RESULTS: We identify and characterize four mycobiome enterotypes using ITS profiling of 3363 samples from 16 cohorts. These enterotypes exhibit stability across populations and geographical locations and significant correlation with bacterial enterotypes. Particularly, we notice that fungal enterotypes have a strong age preference, where the enterotype dominated by Candida (i.e., Can_type enterotype) is enriched in the elderly population and confers an increased risk of multiple diseases associated with a compromised intestinal barrier. In addition, bidirectional mediation analysis reveals that the fungi-contributed aerobic respiration pathway associated with the Can_type enterotype might mediate the association between the compromised intestinal barrier and aging. CONCLUSIONS: We show that the human gut mycobiome has stable compositional patterns across individuals and significantly correlates with multiple host factors, such as diseases and host age. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Microbiota , Micobioma , Humanos , Idoso , Micobioma/genética , Microbioma Gastrointestinal/genética , Candida , Envelhecimento
18.
ISME Commun ; 3(1): 83, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596349

RESUMO

For decades, marine plankton have been investigated for their capacity to modulate biogeochemical cycles and provide fishery resources. Between the sunlit (epipelagic) layer and the deep dark waters, lies a vast and heterogeneous part of the ocean: the mesopelagic zone. How plankton composition is shaped by environment has been well-explored in the epipelagic but much less in the mesopelagic ocean. Here, we conducted comparative analyses of trans-kingdom community assemblages thriving in the mesopelagic oxygen minimum zone (OMZ), mesopelagic oxic, and their epipelagic counterparts. We identified nine distinct types of intermediate water masses that correlate with variation in mesopelagic community composition. Furthermore, oxygen, NO3- and particle flux together appeared as the main drivers governing these communities. Novel taxonomic signatures emerged from OMZ while a global co-occurrence network analysis showed that about 70% of the abundance of mesopelagic plankton groups is organized into three community modules. One module gathers prokaryotes, pico-eukaryotes and Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) from oxic regions, and the two other modules are enriched in OMZ prokaryotes and OMZ pico-eukaryotes, respectively. We hypothesize that OMZ conditions led to a diversification of ecological niches, and thus communities, due to selective pressure from limited resources. Our study further clarifies the interplay between environmental factors in the mesopelagic oxic and OMZ, and the compositional features of communities.

19.
Mol Syst Biol ; 19(9): e11525, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37485738

RESUMO

Multi-omics analyses are used in microbiome studies to understand molecular changes in microbial communities exposed to different conditions. However, it is not always clear how much each omics data type contributes to our understanding and whether they are concordant with each other. Here, we map the molecular response of a synthetic community of 32 human gut bacteria to three non-antibiotic drugs by using five omics layers (16S rRNA gene profiling, metagenomics, metatranscriptomics, metaproteomics and metabolomics). We find that all the omics methods with species resolution are highly consistent in estimating relative species abundances. Furthermore, different omics methods complement each other for capturing functional changes. For example, while nearly all the omics data types captured that the antipsychotic drug chlorpromazine selectively inhibits Bacteroidota representatives in the community, the metatranscriptome and metaproteome suggested that the drug induces stress responses related to protein quality control. Metabolomics revealed a decrease in oligosaccharide uptake, likely caused by Bacteroidota depletion. Our study highlights how multi-omics datasets can be utilized to reveal complex molecular responses to external perturbations in microbial communities.


Assuntos
Microbiota , Multiômica , Humanos , RNA Ribossômico 16S/genética , Microbiota/genética , Metabolômica/métodos , Bactérias/genética , Metagenômica/métodos
20.
Adv Sci (Weinh) ; 10(25): e2302159, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37382405

RESUMO

DNA methylation plays a crucial role in the survival of bacteriophages (phages), yet the understanding of their genome methylation remains limited. In this study, DNA methylation patterns are analyzed in 8848 metagenome-assembled high-quality phages from 104 fecal samples using single-molecule real-time sequencing. The results demonstrate that 97.60% of gut phages exhibit methylation, with certain factors correlating with methylation densities. Phages with higher methylation densities appear to have potential viability advantages. Strikingly, more than one-third of the phages possess their own DNA methyltransferases (MTases). Increased MTase copies are associated with higher genome methylation densities, specific methylation motifs, and elevated prevalence of certain phage groups. Notably, the majority of these MTases share close homology with those encoded by gut bacteria, suggesting their exchange during phage-bacterium interactions. Furthermore, these MTases can be employed to accurately predict phage-host relationships. Overall, the findings indicate the widespread utilization of DNA methylation by gut DNA phages as an evasion mechanism against host defense systems, with a substantial contribution from phage-encoded MTases.


Assuntos
Bacteriófagos , Humanos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Metiltransferases/genética , Metilação de DNA/genética , DNA , Metagenoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA