Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 3(4): 101816, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36386888

RESUMO

Choroid plexus, located in brain ventricles, is the site of blood-cerebrospinal fluid barrier that contains endothelial cells and an epithelial monolayer separated by stroma. We established a two-cell-type model of the human choroid plexus consisting of immortalized endothelial cells (iHCPEnC) and epithelial papilloma (HIBCPP) cells grown on opposite sides of filter supports. In this protocol, we describe the preparation of this model, the measurement of transepithelial electrical resistance (TEER), and immunofluorescence imaging-based analysis to determine the barrier function. For complete details on the use and execution of this protocol, please refer to Muranyi et al. (2022).


Assuntos
Plexo Corióideo , Células Endoteliais , Humanos , Células Epiteliais , Barreira Hematoencefálica , Contagem de Células
2.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233688

RESUMO

The Gram-negative diplococcus Neisseria meningitidis, also called meningococcus, exclusively infects humans and can cause meningitis, a severe disease that can lead to the death of the afflicted individuals. To cause meningitis, the bacteria have to enter the central nervous system (CNS) by crossing one of the barriers protecting the CNS from entry by pathogens. These barriers are represented by the blood-brain barrier separating the blood from the brain parenchyma and the blood-cerebrospinal fluid (CSF) barriers at the choroid plexus and the meninges. During the course of meningococcal disease resulting in meningitis, the bacteria undergo several interactions with host cells, including the pharyngeal epithelium and the cells constituting the barriers between the blood and the CSF. These interactions are required to initiate signal transduction pathways that are involved during the crossing of the meningococci into the blood stream and CNS entry, as well as in the host cell response to infection. In this review we summarize the interactions and pathways involved in these processes, whose understanding could help to better understand the pathogenesis of meningococcal meningitis.


Assuntos
Barreira Hematoencefálica , Interações Hospedeiro-Patógeno , Meningite Meningocócica/microbiologia , Neisseria meningitidis/fisiologia , Transdução de Sinais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/microbiologia , Plexo Corióideo/metabolismo , Plexo Corióideo/microbiologia , Humanos , Meninges/metabolismo , Meninges/microbiologia
3.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785145

RESUMO

Non-typeable Haemophilus influenzae (NTHI) is a pathogen of the human respiratory tract causing the majority of invasive H. influenzae infections. Severe invasive infections such as septicemia and meningitis occur rarely, but the lack of a protecting vaccine and the increasing antibiotic resistance of NTHI impede treatment and emphasize its relevance as a potential meningitis causing pathogen. Meningitis results from pathogens crossing blood-brain barriers and invading the immune privileged central nervous system (CNS). In this study, we addressed the potential of NTHI to enter the brain by invading cells of the choroid plexus (CP) prior to meningeal inflammation to enlighten NTHI pathophysiological mechanisms. A cell culture model of human CP epithelial cells, which form the blood-cerebrospinal fluid barrier (BCSFB) in vivo, was used to analyze adhesion and invasion by immunofluorescence and electron microscopy. NTHI invade CP cells in vitro in a polar fashion from the blood-facing side. Furthermore, NTHI invasion rates are increased compared to encapsulated HiB and HiF strains. Fimbriae occurrence attenuated adhesion and invasion. Thus, our findings underline the role of the BCSFB as a potential entry port for NTHI into the brain and provide strong evidence for a function of the CP during NTHI invasion into the CNS during the course of meningitis.


Assuntos
Plexo Corióideo/citologia , Plexo Corióideo/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Infecções por Haemophilus/metabolismo , Haemophilus influenzae/patogenicidade , Interações Hospedeiro-Patógeno , Aderência Bacteriana , Barreira Hematoencefálica , Linhagem Celular Tumoral , Polaridade Celular , Sobrevivência Celular , DNA Bacteriano/genética , Fímbrias Bacterianas , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/genética , Haemophilus influenzae/isolamento & purificação , Humanos , Meningite/líquido cefalorraquidiano , Meningite/microbiologia , Virulência , Fatores de Virulência
4.
Lab Invest ; 99(8): 1245-1255, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30996296

RESUMO

The blood-cerebrospinal fluid barrier (BCSFB) plays important roles during the transport of substances into the brain, the pathogenesis of central nervous system (CNS) diseases, and neuro-immunological processes. Along these lines, transmigration of granulocytes across the blood-cerebrospinal fluid (CSF) barrier (BCSFB) is a hallmark of inflammatory events in the CNS. Choroid plexus (CP) epithelial cells are an important tool to generate in vitro models of the BCSFB. A porcine CP epithelial cell line (PCP-R) has been shown to present properties of the BCSFB, including a strong barrier function, when cultivated on cell culture filter inserts containing a membrane with 0.4 µm pore size. For optimal analysis of pathogen and host immune cell interactions with the basolateral side of the CP epithelium, which presents the physiologically relevant "blood side", the CP epithelial cells need to be grown on the lower face of the filter in an inverted cell culture insert model, with the supporting membrane possessing a pore size of at least 3.0 µm. Here, we demonstrate that PCP-R cells cultivated in the inverted model on filter support membranes with a pore size of 3.0 µm following a "conventional" protocol grow through the pores and cross the membrane, forming a second layer on the upper face. Therefore, we developed a cell cultivation protocol, which strongly reduces crossing of the membrane by the cells. Under these conditions, PCP-R cells retain important properties of a BCSFB model, as was observed by the formation of continuous tight junctions and a strong barrier function demonstrated by a high transepithelial electrical resistance and a low permeability for macromolecules. Importantly, compared with the conventional cultivation conditions, our optimized model allows improved investigations of porcine granulocyte transmigration across the PCP-R cell layer.


Assuntos
Barreira Hematoencefálica/fisiologia , Técnicas de Cultura de Células/métodos , Plexo Corióideo/citologia , Células Epiteliais , Granulócitos , Migração Transendotelial e Transepitelial/fisiologia , Animais , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Granulócitos/citologia , Granulócitos/metabolismo , Modelos Biológicos , Suínos
5.
Int J Med Microbiol ; 308(7): 829-839, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30049648

RESUMO

The Gram-negative bacterium Haemophilus influenzae (H. influenzae) can commensally colonize the upper respiratory tract, but also cause life threatening disease including epiglottitis, sepsis and meningitis. The H. influenzae capsule protects the bacteria against both phagocytosis and opsonization. Encapsulated H. influenzae strains are classified into serotypes ranging from a to f dependent on their distinct polysaccharide capsule. Due to the implementation of vaccination the incidence of invasive H. influenzae type b (Hib) infections has strongly decreased and infections with other capsulated types, including H. influenzae type f (Hif), are emerging. The pathogenesis of H. influenzae meningitis is not clarified. To enter the central nervous system (CNS) the bacteria generally have to cross either the blood-brain barrier (BBB) or the blood-cerebrospinal fluid barrier (BSCFB). Using a cell culture model of the BCSFB based on human choroid plexus papilloma (HIBCPP) cells and different H. influenzae strains we investigated whether Hib and Hif invade the cells, and if invasion differs between encapsulated vs. capsular-deficient and fimbriated vs. non-fimbriated variants. We find that Hib can adhere to and invade into HIBCPP cells. Invasion occurs in a strongly polar fashion, since the bacteria enter the cells preferentially from the basolateral "blood "side. Fimbriae and capsule attenuate invasion into choroid plexus (CP) epithelial cells, and capsulation can influence the bacterial distribution pattern. Finally, analysis of clinical Hib and Hif isolates confirms the detected invasive properties of H. influenzae. Our data point to roles of capsule and fimbriae during invasion of CP epithelial cells.


Assuntos
Aderência Bacteriana/fisiologia , Cápsulas Bacterianas/patologia , Barreira Hematoencefálica/microbiologia , Fímbrias Bacterianas/patologia , Infecções por Haemophilus/patologia , Haemophilus influenzae/patogenicidade , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Haemophilus influenzae/classificação , Haemophilus influenzae/isolamento & purificação , Interações Hospedeiro-Patógeno/fisiologia , Humanos
6.
Molecules ; 23(5)2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751628

RESUMO

Epithelial human blood group antigens (HBGAs) on O-glycans play roles in pathogen binding and the initiation of infection, while similar structures on secretory mucins exert protective functions. These double-faced features of O-glycans in infection and innate immunity are reviewed based on two instructive examples of bacterial and viral pathogens. Helicobacter pylori represents a class 1 carcinogen in the human stomach. By expressing blood group antigen-binding adhesin (BabA) and LabA adhesins that bind to Lewis-b and LacdiNAc, respectively, H. pylori colocalizes with the mucin MUC5AC in gastric surface epithelia, but not with MUC6, which is cosecreted with trefoil factor family 2 (TFF2) by deep gastric glands. Both components of the glandular secretome are concertedly up-regulated upon infection. While MUC6 expresses GlcNAc-capped glycans as natural antibiotics for H. pylori growth control, TFF2 may function as a probiotic lectin. In viral infection human noroviruses of the GII genogroup interact with HBGAs via their major capsid protein, VP1. HBGAs on human milk oligosaccharides (HMOs) may exert protective functions by binding to the P2 domain pocket on the capsid. We discuss structural details of the P2 carbohydrate-binding pocket in interaction with blood group H/Lewis-b HMOs and fucoidan-derived oligofucoses as effective interactors for the most prevalent norovirus strains, GII.4 and GII.17.


Assuntos
Imunidade/imunologia , Infecções/etiologia , Infecções/metabolismo , Lectinas/metabolismo , Mucinas/metabolismo , Polissacarídeos/metabolismo , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Lectinas/química , Polimorfismo Genético , Fator Trefoil-2/química , Fator Trefoil-2/metabolismo
7.
J Vis Exp ; (111)2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27213495

RESUMO

The epithelial cells of the choroid plexus (CP), located in the ventricular system of the brain, form the blood-cerebrospinal fluid barrier (BCSFB). The BCSFB functions in separating the cerebrospinal fluid (CSF) from the blood and restricting the molecular exchange to a minimum extent. An in vitro model of the BCSFB is based on cells derived from a human choroid plexus papilloma (HIBCPP). HIBCPP cells display typical barrier functions including formation of tight junctions (TJs), development of a transepithelial electrical resistance (TEER), as well as minor permeabilities for macromolecules. There are several pathogens that can enter the central nervous system (CNS) via the BCSFB and subsequently cause severe disease like meningitis. One of these pathogens is Neisseria meningitidis (N. meningitidis), a human-specific bacterium. Employing the HIBCPP cells in an inverted cell culture filter insert system enables to study interactions of pathogens with cells of the BCSFB from the basolateral cell side, which is relevant in vivo. In this article, we describe seeding and culturing of HIBCPP cells on cell culture inserts. Further, infection of the cells with N. meningitidis along with analysis of invaded and adhered bacteria via double immunofluorescence is demonstrated. As the cells of the CP are also involved in other diseases, including neurodegenerative disorders like Alzheimer`s disease and Multiple Sclerosis, as well as during the brain metastasis of tumor cells, the model system can also be applied in other fields of research. It provides the potential to decipher molecular mechanisms and to identify novel therapeutic targets.


Assuntos
Infecções Bacterianas , Barreira Hematoencefálica , Plexo Corióideo , Células Epiteliais , Plexo Corióideo/citologia , Humanos , Junções Íntimas
8.
J Neuroinflammation ; 11: 163, 2014 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-25347003

RESUMO

BACKGROUND: The human-specific, Gram-negative bacterium Neisseria meningitidis (Nm) is a leading cause of bacterial meningitis worldwide. The blood-cerebrospinal fluid barrier (BCSFB), which is constituted by the epithelial cells of the choroid plexus (CP), has been suggested as one of the potential entry sites of Nm into the CSF and can contribute to the inflammatory response during infectious diseases of the brain. Toll-like receptors (TLRs) are involved in mediating signal transduction caused by the pathogens. METHODS: Using a recently established in vitro model of the human BCSFB based on human malignant CP papilloma (HIBCPP) cells we investigated the cellular response of HIBCPP cells challenged with the meningitis-causing Nm strain, MC58, employing transcriptome and RT-PCR analysis, cytokine bead array, and enzyme-linked immunosorbent assay (ELISA). In comparison, we analyzed the answer to the closely related unencapsulated carrier isolate Nm α14. The presence of TLRs in HIBCPP and their role during signal transduction caused by Nm was studied by RT-PCR and the use of specific agonists and mutant bacteria. RESULTS: We observed a stronger transcriptional response after infection with strain MC58, in particular with its capsule-deficient mutant MC58siaD-, which correlated with bacterial invasion levels. Expression evaluation and Gene Set Enrichment Analysis pointed to a NFκB-mediated pro-inflammatory immune response involving up-regulation of the transcription factor IκBζ. Infected cells secreted significant levels of pro-inflammatory chemokines and cytokines, including, among others, IL8, CXCL1-3, and the IκBζ target gene product IL6. The expression profile of pattern recognition receptors in HIBCPP cells and the response to specific agonists indicates that TLR2/TLR6, rather than TLR4 or TLR2/TLR1, is involved in the cellular reaction following Nm infection. CONCLUSIONS: Our data show that Nm can initiate a pro-inflammatory response in human CP epithelial cells probably involving TLR2/TLR6 signaling and the transcriptional regulator IκBζ.


Assuntos
Barreira Hematoencefálica/microbiologia , Barreira Hematoencefálica/fisiopatologia , Citocinas/metabolismo , NF-kappa B/fisiologia , Neisseria meningitidis/patogenicidade , Regulação para Cima/fisiologia , Análise de Variância , Linhagem Celular Tumoral , Sobrevivência Celular , Plexo Corióideo/citologia , Citocinas/genética , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/fisiologia , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Papiloma do Plexo Corióideo/patologia , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
9.
Nutr Res ; 33(10): 831-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24074741

RESUMO

Human milk oligosaccharides help to prevent infectious diseases in breastfed infants. Larger scale testing, particularly in animal models and human clinical studies, is still limited due to shortened availability of more complex oligosaccharides. The purpose of this study was to evaluate 2'-fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL) synthesized by whole-cell biocatalysis for their biological activity in vitro. Therefore, we have tested these oligosaccharides for their inhibitory potential of pathogen adhesion in two different human epithelial cell lines. 2'-FL could inhibit adhesion of Campylobacter jejuni, enteropathogenic Escherichia coli, Salmonella enterica serovar fyris, and Pseudomonas aeruginosa to the intestinal human cell line Caco-2 (reduction of 26%, 18%, 12%, and 17%, respectively), as could be shown for 3-FL (enteropathogenic E coli 29%, P aeruginosa 26%). Furthermore, adherence of P aeruginosa to the human respiratory epithelial cell line A549 was significantly inhibited by 2'-FL and 3-FL (reduction of 24% and 23%, respectively). These results confirm the biological and functional activity of biotechnologically synthesized human milk oligosaccharides. Mass-tailored human milk oligosaccharides could be used in the future to supplement infant formula ingredients or as preventatives to reduce the impact of infectious diseases.


Assuntos
Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Leite Humano/química , Sistema Respiratório/efeitos dos fármacos , Trissacarídeos/farmacologia , Antibacterianos/biossíntese , Biocatálise , Bioengenharia , Aleitamento Materno , Células CACO-2 , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/patogenicidade , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Enteropatogênica/patogenicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Bactérias Gram-Negativas/patogenicidade , Humanos , Infecções/microbiologia , Intestinos/microbiologia , Oligossacarídeos/biossíntese , Oligossacarídeos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Sistema Respiratório/microbiologia , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/patogenicidade , Trissacarídeos/biossíntese
10.
J Neuroinflammation ; 10: 31, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23448224

RESUMO

BACKGROUND: Bacterial invasion through the blood-cerebrospinal fluid barrier (BCSFB) during bacterial meningitis causes secretion of proinflammatory cytokines/chemokines followed by the recruitment of leukocytes into the CNS. In this study, we analyzed the cellular and molecular mechanisms of polymorphonuclear neutrophil (PMN) and monocyte transepithelial transmigration (TM) across the BCSFB after bacterial infection. METHODS: Using an inverted transwell filter system of human choroid plexus papilloma cells (HIBCPP), we studied leukocyte TM rates, the migration route by immunofluorescence, transmission electron microscopy and focused ion beam/scanning electron microscopy, the secretion of cytokines/chemokines by cytokine bead array and posttranslational modification of the signal regulatory protein (SIRP) α via western blot. RESULTS: PMNs showed a significantly increased TM across HIBCPP after infection with wild-type Neisseria meningitidis (MC58). In contrast, a significantly decreased monocyte transmigration rate after bacterial infection of HIBCPP could be observed. Interestingly, in co-culture experiments with PMNs and monocytes, TM of monocytes was significantly enhanced. Analysis of paracellular permeability and transepithelial electrical resistance confirmed an intact barrier function during leukocyte TM. With the help of the different imaging techniques we could provide evidence for para- as well as for transcellular migrating leukocytes. Further analysis of secreted cytokines/chemokines showed a distinct pattern after stimulation and transmigration of PMNs and monocytes. Moreover, the transmembrane glycoprotein SIRPα was deglycosylated in monocytes, but not in PMNs, after bacterial infection. CONCLUSIONS: Our findings demonstrate that PMNs and monoctyes differentially migrate in a human BCSFB model after bacterial infection. Cytokines and chemokines as well as transmembrane proteins such as SIRPα may be involved in this process.


Assuntos
Barreira Hematoencefálica/fisiologia , Infecções Meningocócicas/patologia , Monócitos/fisiologia , Infiltração de Neutrófilos/fisiologia , Migração Transendotelial e Transepitelial/fisiologia , Antígenos de Diferenciação/metabolismo , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Células Cultivadas , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Neisseria meningitidis , Papiloma do Plexo Corióideo/patologia , Receptores Imunológicos/metabolismo
11.
Virus Res ; 170(1-2): 66-74, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23000117

RESUMO

Enterovirus is the most common pathogen causing viral meningitis especially in children. Besides the blood-brain barrier (BBB) the choroid plexus, which forms the blood-cerebrospinal-fluid (CSF) barrier (BCSFB), was shown to be involved in the pathogenesis of enteroviral meningitis. In a human in vitro model of the BCSFB consisting of human choroid plexus papilloma cells (HIBCPP), the permissiveness of plexus epithelial cells for Echovirus 30 (EV30) was analyzed by immunoblotting and quantitative real-time PCR (Q-PCR). HIBCPP could be directly infected by EV30 from the apical as well as from the physiological relevant basolateral side. During an infection period of 5h no alterations of barrier function and cell viability could be observed. Analysis of the cytokine/chemokine-profile following enteroviral infection with a cytometric bead array (CBA) and Q-PCR revealed an enhanced secretion of PanGRO (CXCL1, CXCL2 and CXCL3), IL8 and CCL5. Q-PCR showed a significant upregulation of CXCL1, CXCL2 and CXCL3 in a time dependant manner. However, there was only a minor effect of HIBCPP-infection with EV30 on transepithelial T lymphocyte migration with or without the chemoattractant CXCL12. Moreover, CXCL3 did not significantly enhance T cell migrations. Therefore additional factors must be involved for the in vivo reported enhanced T cell migration into the CNS in the context of enteroviral meningitis. As HIBCPP are permissive for infection with EV30, they constitute a valuable human in vitro model to study viral infection at the BCSFB.


Assuntos
Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/virologia , Quimiotaxia/imunologia , Enterovirus Humano B/imunologia , Papiloma do Plexo Corióideo/imunologia , Papiloma do Plexo Corióideo/virologia , Linfócitos T/imunologia , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Quimiocinas/metabolismo , Humanos , Linfócitos T/metabolismo , Migração Transendotelial e Transepitelial/imunologia
12.
PLoS One ; 7(1): e30069, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22253884

RESUMO

Acute bacterial meningitis is a life-threatening disease in humans. Discussed as entry sites for pathogens into the brain are the blood-brain and the blood-cerebrospinal fluid barrier (BCSFB). Although human brain microvascular endothelial cells (HBMEC) constitute a well established human in vitro model for the blood-brain barrier, until now no reliable human system presenting the BCSFB has been developed. Here, we describe for the first time a functional human BCSFB model based on human choroid plexus papilloma cells (HIBCPP), which display typical hallmarks of a BCSFB as the expression of junctional proteins and formation of tight junctions, a high electrical resistance and minimal levels of macromolecular flux when grown on transwell filters. Importantly, when challenged with the zoonotic pathogen Streptococcus suis or the human pathogenic bacterium Neisseria meningitidis the HIBCPP show polar bacterial invasion only from the physiologically relevant basolateral side. Meningococcal invasion is attenuated by the presence of a capsule and translocated N. meningitidis form microcolonies on the apical side of HIBCPP opposite of sites of entry. As a functionally relevant human model of the BCSFB the HIBCPP offer a wide range of options for analysis of disease-related mechanisms at the choroid plexus epithelium, especially involving human pathogens.


Assuntos
Barreira Hematoencefálica/microbiologia , Polaridade Celular , Líquido Cefalorraquidiano/microbiologia , Modelos Biológicos , Neisseria meningitidis/fisiologia , Streptococcus suis/fisiologia , Animais , Aderência Bacteriana , Cápsulas Bacterianas/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/ultraestrutura , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Plexo Corióideo/microbiologia , Plexo Corióideo/patologia , Contagem de Colônia Microbiana , Impedância Elétrica , Epitélio/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Imunofluorescência , Humanos , Inulina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Movimento , Neisseria meningitidis/citologia , Neisseria meningitidis/crescimento & desenvolvimento , Neisseria meningitidis/ultraestrutura , Papiloma/microbiologia , Papiloma/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Streptococcus suis/citologia , Junções Íntimas/metabolismo , Junções Íntimas/ultraestrutura
13.
Microbes Infect ; 13(11): 953-62, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21683799

RESUMO

The Gram-positive zoonotic bacterium Streptococcus suis (S. suis) is responsible for a wide range of diseases including meningitis in pigs and humans. The blood-cerebrospinal fluid (CSF) barrier is constituted by the epithelial cells of the choroid plexus, which execute barrier function also after bacteria have entered the central nervous system (CNS). We show that the bacterial capsule, a major virulence factor, strongly attenuates adhesion of S. suis to the apical side of porcine choroid plexus epithelial cells (PCPEC). Oligonucleotide microarray analysis and quantitative PCR surprisingly demonstrated that adherent wild-type and capsule-deficient S. suis influenced expression of a pronounced similar pattern of genes in PCPEC. Investigation of purified capsular material provided no evidence for a significant role of the capsule. Enriched among the regulated genes were those involved in "inflammatory response", "defense response" and "cytokine activity". These comprised several cytokines and chemokines including the interleukins 6 and 8, which could be detected on protein level. We show that after infection with S. suis the choroid plexus contributes to the immune response by actively producing cytokines and chemokines. Other virulence factors than the bacterial capsule may be relevant in inducing a strong inflammatory response in the CNS during S. suis meningitis.


Assuntos
Plexo Corióideo/imunologia , Citocinas/biossíntese , Células Epiteliais/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus suis/imunologia , Doenças dos Suínos/imunologia , Transcriptoma , Animais , Plexo Corióideo/microbiologia , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus suis/patogenicidade , Suínos , Doenças dos Suínos/microbiologia
14.
J Immunol ; 184(9): 5200-12, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20351187

RESUMO

Knowing the inherent stimulatory properties of the lipid moiety of bacterial lipoproteins, we first hypothesized that Brucella abortus outer membrane protein (Omp)16 lipoprotein would be able to elicit a protective immune response without the need of external adjuvants. In this study, we demonstrate that Omp16 administered by the i.p. route confers significant protection against B. abortus infection and that the protective response evoked is independent of the protein lipidation. To date, Omp16 is the first Brucella protein that without the requirement of external adjuvants is able to induce similar protection levels to the control live vaccine S19. Moreover, the protein portion of Omp16 (unlipidated Omp16 [U-Omp16]) elicits a protective response when administered by the oral route. Either systemic or oral immunization with U-Omp16 elicits a Th1-specific response. These abilities of U-Omp16 indicate that it is endowed with self-adjuvanting properties. The adjuvanticity of U-Omp16 could be explained, at least in part, by its capacity to activate dendritic cells in vivo. U-Omp16 is also able to stimulate dendritic cells and macrophages in vitro. The latter property and its ability to induce a protective Th1 immune response against B. abortus infection have been found to be TLR4 dependent. The facts that U-Omp16 is an oral protective Ag and possesses a mucosal self-adjuvanting property led us to develop a plant-made vaccine expressing U-Omp16. Our results indicate that plant-expressed recombinant U-Omp16 is able to confer protective immunity, when given orally, indicating that a plant-based oral vaccine expressing U-Omp16 could be a valuable approach to controlling this disease.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacina contra Brucelose/imunologia , Brucelose/prevenção & controle , Células Dendríticas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Células Th1/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/genética , Administração Oral , Animais , Antígenos de Bactérias/administração & dosagem , Proteínas da Membrana Bacteriana Externa/administração & dosagem , Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas da Membrana Bacteriana Externa/genética , Vacina contra Brucelose/administração & dosagem , Brucelose/imunologia , Diferenciação Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Feminino , Adjuvante de Freund/administração & dosagem , Interações Hospedeiro-Patógeno/genética , Imunidade Celular , Injeções Intraperitoneais , Lipídeos/administração & dosagem , Lipoproteínas/administração & dosagem , Lipoproteínas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th1/microbiologia , Nicotiana/genética , Nicotiana/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA