Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37514587

RESUMO

Antibiotics are widely used to treat infectious diseases. This leads to the presence of antibiotics and their metabolic products in the ecosystem, especially in aquatic environments. In many countries, the growth of pathogen resistance to antibiotics is considered a threat to national security. Therefore, methods for determining the sensitivity/resistance of bacteria to antimicrobial drugs are important. This review discusses the mechanisms of the formation of antibacterial resistance and the various methods and sensor systems available for analyzing antibiotic effects on bacteria. Particular attention is paid to acoustic biosensors with active immobilized layers and to sensors that analyze antibiotics directly in liquids. It is shown that sensors of the second type allow analysis to be done within a short period, which is important for timely treatment.


Assuntos
Antibacterianos , Técnicas Biossensoriais , Antibacterianos/farmacologia , Ecossistema , Bactérias , Farmacorresistência Bacteriana , Técnicas Biossensoriais/métodos
2.
Int J Biol Macromol ; 242(Pt 1): 124613, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119881

RESUMO

An antibody-detecting sensor is described that is based on a microwave electrodynamic resonator. A polystyrene film with immobilized bacteria deposited on a lithium niobate plate was placed at one end of the resonator and was used as the sensing element. The second end was electrically shorted. The frequency and depth of the reflection coefficient S11 for three resonances in the range 6.5-8.5 GHz were used as an analytical signal to examine antibody interactions with bacteria and determine the time required for cell immobilization. The sensor distinguished between situations in which bacteria interacted with specific antibodies and those in which no such interaction occurred (control). Although the cell-antibody interaction changed the frequency and depth of the second and third resonance peaks, the parameters of the first resonance peak did not change. The interaction of cells with nonspecific antibodies did not change the parameters of any of the peaks. These results are promising for use in the design of methods to detect specific antibodies, which can supplement the existing methods of antibody analysis.


Assuntos
Anticorpos Antibacterianos , Especificidade de Anticorpos , Complexo Antígeno-Anticorpo , Técnicas Biossensoriais , Micro-Ondas , Anticorpos Antibacterianos/análise , Complexo Antígeno-Anticorpo/análise , Reações Antígeno-Anticorpo , Azospirillum brasilense , Azospirillum lipoferum
3.
Ultrasound Med Biol ; 48(5): 901-911, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35232607

RESUMO

A sensor system based on a piezoelectric resonator with a lateral electric field in the frequency range 6-7 MHz of the electric field for virus detection is described. Through use of the transmissible virus causing gastroenteritis in pigs and specific antibodies, the possibility of detecting the virus in suspension in real time was determined. It was found that the frequency dependence of the real and imaginary parts of the electrical impedance of such a resonator loaded with a virus suspension changes significantly after the addition of specific antibodies to the suspension. No changes are observed if the antibodies are not specific. Thus, the results obtained illustrate the possibility of detecting viruses in situ, directly in the liquid phase, if the change in the real or imaginary parts of the electrical impedance after the addition of antibodies is used as an analytical signal. The possibility of virus detection in the presence of foreign viral particles has been illustrated.


Assuntos
Técnicas Biossensoriais , Vírus , Animais , Anticorpos , Técnicas Biossensoriais/métodos , Impedância Elétrica , Suínos
4.
Ultrasonics ; 119: 106603, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34644534

RESUMO

The possibility of development a liquid sensor based on a piezoelectric resonator with radial concentric electrodes is shown. The specified resonator has a large number of resonance peaks corresponding to different vibrational modes. The influence of two types of liquid container with distilled water on the resonance characteristics of these vibrational modes is experimentally investigated. As a result, the optimal type of container and two vibrational modes with frequencies of 0.128 and 0.317 MHz were selected, which retain acceptable Q-factors in the presence of distilled water. The dependences of the resonance frequency and the maximum value of the real part of the electrical impedance of these resonance peaks on the conductivity of the liquid were measured. It has been found that with an increase in the conductivity of the liquid, the resonance frequency of the parallel resonance initially remains practically unchanged, but after reaching a certain value of the conductivity of water, it decreases for both resonances. In this case, the maximum value of the real part of the electrical impedance first decreases, reaches a minimum, and then increases in all cases. It is shown that using these dependences as calibration curves, one can unambiguously determine the conductivity of a liquid in the range of 45-5000 µS/cm.

5.
Ultrasound Med Biol ; 46(7): 1727-1737, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32376190

RESUMO

The interaction of microbial cells with antibody-gold nanoparticle conjugates in conductive suspensions was experimentally studied by using an acoustic slot-mode sensor. The sensor consisted of a piezoelectric plate with a propagating acoustic wave and a liquid container located above this plate with a given gap. An analysis of the measured parameters of the sensor revealed that the specific interaction of bacterial cells with the conjugates led to a stronger change in the sensor output signal than the specific interaction of bacterial cells with antibodies. The measurements were made for Azospirillum brasilense Sp7 cells in buffer with an initial conductivity of 5-30 µS/cm. The limit of cell detection with the conjugates was 103 cells/mL, and the analysis took about 4 min. The advantage of the sensor is the possibility of repeated use and cleaning of the liquid container without damaging the sensor's elements. These results are promising for use in rapid test systems for the direct detection of microbial cells in actual samples of liquids in medical diagnostics.


Assuntos
Carga Bacteriana/métodos , Nanopartículas Metálicas , Acústica , Azospirillum brasilense , Escherichia coli K12 , Ouro , Limite de Detecção , Sensibilidade e Especificidade , Som
6.
Sensors (Basel) ; 20(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326578

RESUMO

Novel bio-materials, like chitosan and its derivatives, appeal to finding a new niche in room temperature gas sensors, demonstrating not only a chemoresistive response, but also changes in mechanical impedance due to vapor adsorption. We determined the coefficients of elasticity and viscosity of chitosan acetate films in air, ammonia, and water vapors by acoustic spectroscopy. The measurements were carried out while using a resonator with a longitudinal electric field at the different concentrations of ammonia (100-1600 ppm) and air humidity (20-60%). It was established that, in the presence of ammonia, the longitudinal and shear elastic modules significantly decreased, whereas, in water vapor, they changed slightly. At that, the viscosity of the films increased greatly upon exposure to both vapors. We found that the film's conductivity increased by two and one orders of magnitude, respectively, in ammonia and water vapors. The effect of analyzed vapors on the resonance properties of a piezoelectric resonator with a lateral electric field that was loaded by a chitosan film on its free side was also experimentally studied. In these vapors, the parallel resonance frequency and maximum value of the real part of the electrical impedance decreased, especially in ammonia. The results of a theoretical analysis of the resonance properties of such a sensor in the presence of vapors turned out to be in a good agreement with the experimental data. It has been also found that with a growth in the concentration of the studied vapors, a decrease in the elastic constants, and an increase in the viscosity factor and conductivity lead to reducing the parallel resonance frequency and the maximum value of the real part of the electric impedance of the piezoelectric resonator with a lateral electric field that was loaded with a chitosan film. This leads to an increase in the sensitivity of such a sensor during exposure to these gas vapors.

7.
Ultrasound Med Biol ; 46(4): 1026-1039, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31932157

RESUMO

A method was developed for the rapid analysis and evaluation of the viability of bacteriophage-infected Escherichia coli (E.coli) XL-1 directly in a conducting suspension by using a slot-mode sensor. The method is based on recording the changes in the depth and frequency of resonant absorption peaks in the frequency dependence of the insertion loss of the sensor before and after the biologic interaction of E. coli with specific bacteriophages. The possibility was shown of recording the infection of E. coli with specific bacteriophages and assessing its viability in suspensions with a conductivity of 4.5-30 µS/cm. Сontrol experiments were carried out with non-specific interactions of E. coli cells with bacteriophages, in which no changes in the sensor variables were observed. The optimal informational variable for estimating the number of viable cells was the degree of change in the depth of the resonant peaks in the frequency dependence of the insertion loss of the sensor. The limit of cell detection was ∼102-103 cells mL-1, with an analysis time of about 5 min. An additional advantage of the sensor was the availability of a removable liquid container, which allows one to use it repeatedly and to facilitate the cleaning of the container from spent samples. The results are promising for the detection of bacteria and assessment of their viability in solutions with conductivity in the range 4.5-30 µS/cm.


Assuntos
Acústica , Carga Bacteriana/métodos , Escherichia coli/fisiologia , Azospirillum lipoferum/fisiologia , Bacteriófago M13/fisiologia , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Escherichia coli/virologia , Microscopia Eletrônica de Transmissão , Som , Espectrofotometria Ultravioleta
8.
Artigo em Inglês | MEDLINE | ID: mdl-24297033

RESUMO

This paper presents experimental results for the characteristics of acoustic waves propagating in a structure containing two parallel piezoelectric plates (I and II) separated by an air gap. Plate I, made of Y-X lithium niobate, contained two interdigital transducers that excited and received an acoustic wave with shear-horizontal polarization. Piezoelectric plate II, made of lithium niobate, was placed above and between the transducers, separated by a fixed gap. For its certain orientation, the amplitude-frequency characteristic showed sharply defined resonant attenuation peaks, which were situated at an equidistant separation from each other. The depth of the peaks was observed to decrease with a wider gap between the plates. It has been stated that these peaks are associated with the resonant reflections of a slot acoustic wave across the width of plate II. Experimentally determined phase velocities and electromechanical coupling coefficient for the slot wave in the structure under study are in a good agreement with theoretical values for various crystallographic orientations of plate II. A comparison between the experimental and theoretical results has allowed us to state two conditions for the slot wave to exist. The structures described may be employed for noncontact excitation of acoustic waves in the plates and for the development of various liquid, gas, and temperature sensors.

9.
Ultrasonics ; 42(1-9): 373-6, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15047314

RESUMO

This paper presents theoretical investigation of the propagation of surface acoustic waves (SAWs) across the boundary between metallized (electrically shorted) and unmetallized (electrically open) regions on the surface of potassium niobate crystals. Potassium niobate is a very strong piezoelectric material and has the interesting property that only one type of SAW, namely a Rayleigh wave, can exist on unmetallized surface, where as two types of SAWs, namely Rayleigh and Bleustein-Gulyaev (BG), can exist on a metallized surface. Analysis shows that the Rayleigh wave propagates through the interface with very little change in amplitude or polarization. On the other hand, almost total reflection of the BG wave is expected. Details of the theoretical analysis and calculated results will be presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA