RESUMO
As part of the multifaceted strategies developed to shape the common environmental policy, considerable attention is now being paid to assessing the degree of environmental degradation in soil under xenobiotic pressure. Bisphenol A (BPA) has only been marginally investigated in this ecosystem context. Therefore, research was carried out to determine the biochemical properties of soils contaminated with BPA at two levels of contamination: 500 mg and 1000 mg BPA kg-1 d.m. of soil. Reliable biochemical indicators of soil changes, whose activity was determined in the pot experiment conducted, were used: dehydrogenases, catalase, urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and ß-glucosidase. Using the definition of soil health as the ability to promote plant growth, the influence of BPA on the growth and development of Zea mays, a plant used for energy production, was also tested. As well as the biomass of aerial parts and roots, the leaf greenness index (SPAD) of Zea mays was also assessed. A key aspect of the research was to identify those of the six remediating substances-molecular sieve, zeolite, sepiolite, starch, grass compost, and fermented bark-whose use could become common practice in both environmental protection and agriculture. Exposure to BPA revealed the highest sensitivity of dehydrogenases, urease, and acid phosphatase and the lowest sensitivity of alkaline phosphatase and catalase to this phenolic compound. The enzyme response generated a reduction in the biochemical fertility index (BA21) of 64% (500 mg BPA) and 70% (1000 mg BPA kg-1 d.m. of soil). The toxicity of BPA led to a drastic reduction in root biomass and consequently in the aerial parts of Zea mays. Compost and molecular sieve proved to be the most effective in mitigating the negative effect of the xenobiotic on the parameters discussed. The results obtained are the first research step in the search for further substances with bioremediation potential against both soil and plants under BPA pressure.
Assuntos
Fosfatase Ácida , Compostos Benzidrílicos , Fenóis , Poluentes do Solo , Solo , Zea mays , Fenóis/química , Compostos Benzidrílicos/química , Poluentes do Solo/química , Zea mays/química , Solo/química , Fosfatase Ácida/metabolismo , Arilsulfatases/metabolismo , Fosfatase Alcalina/metabolismo , Zeolitas/química , Oxirredutases/metabolismo , Urease/metabolismo , Catalase/metabolismo , Biodegradação Ambiental , Silicatos de Magnésio/química , Amido/química , beta-Glucosidase/metabolismo , Compostagem/métodosRESUMO
Soil's biological equilibrium, disturbed by the uncontrolled penetration of pesticides, can be restored by the activity of native microorganisms, which show abilities in neutralizing these xenobiotics. Therefore, this research is necessary in the search for new microorganisms used in the process of the bioremediation of contaminated soils. The aim of this study was to evaluate the effects of the herbicides, Sulcogan 300 SC, Tezosar 500 SC, and Sulcotrek 500 SC, applied to soil at the manufacturers' recommended dosage as well as 10-fold higher, on the abundance of microorganisms, the diversity and structure of bacterial and fungal communities, the activity of soil enzymes, and the growth and development of Zea mays L. It was found that herbicides in contaminating amounts stimulated the proliferation of organotrophic bacteria and inhibited the growth of fungi. Organotrophic bacteria and actinobacteria were represented by K-strategies and fungi by r-strategies. Bacteria belonging to the phylum, Actinobacteriota, represented by the genus, Cellulosimicrobium, were most abundant in the soil, while among the fungi, it was the phylum, Ascomycota, represented by the genus, Humicola and Chaetomium. The herbicides decreased urease activity while increasing arylsulfatase and acid phosphatase activity. They had a positive effect on the growth and development of Zea mays L., as evidenced by an increase in the values of the plant tolerance index (TI) and the maize leaf greenness index (SPAD). The results indicate that soil microorganisms and enzymes are suitable indicators reflecting the quality of herbicide-treated soil.
Assuntos
Ascomicetos , Herbicidas , Poluentes do Solo , Solo/química , Fungos , Bactérias , Herbicidas/farmacologia , Microbiologia do Solo , Zea maysRESUMO
Negative public sentiment built up around bisphenol A (BPA) follows growing awareness of the frequency of this chemical compound in the environment. The increase in air, water, and soil contamination by BPA has also generated the need to replace it with less toxic analogs, such as Bisphenol F (BPF) and Bisphenol S (BPS). However, due to the structural similarity of BPF and BPS to BPA, questions arise about the safety of their usage. The toxicity of BPA, BPF, and BPS towards humans and animals has been fairly well understood. The biodegradability potential of microorganisms towards each of these bisphenols is also widely recognized. However, the scale of their inhibitory pressure on soil microbiomes and soil enzyme activity has not been estimated. These parameters are extremely important in determining soil health, which in turn also influences plant growth and development. Therefore, in this manuscript, knowledge has been expanded and systematized regarding the differences in toxicity between BPA and its two analogs. In the context of the synthetic characterization of the effects of bisphenol permeation into the environment, the toxic impact of BPA, BPF, and BPS on the microbiological and biochemical parameters of soils was traced. The response of cultivated plants to their influence was also analyzed.
RESUMO
Owing to their wide range of applications in the control of ticks and insects in horticulture, forestry, agriculture and food production, pyrethroids pose a significant threat to the environment, including a risk to human health. Hence, it is extremely important to gain a sound understanding of the response of plants and changes in the soil microbiome induced by permethrin. The purpose of this study has been to show the diversity of microorganisms, activity of soil enzymes and growth of Zea mays following the application of permethrin. This article presents the results of the identification of microorganisms with the NGS sequencing method, and of isolated colonies of microorganisms on selective microbiological substrates. Furthermore, the activity of several soil enzymes, such as dehydrogenases (Deh), urease (Ure), catalase (Cat), acid phosphatase (Pac), alkaline phosphatase (Pal), ß-glucosidase (Glu) and arylsulfatase (Aryl), as well as the growth of Zea mays and its greenness indicators (SPAD), after 60 days of growth following the application of permethrin, were presented. The research results indicate that permethrin does not have a negative effect on the growth of plants. The metagenomic studies showed that the application of permethrin increases the abundance of Proteobacteria, but decreases the counts of Actinobacteria and Ascomycota. The application of permethrin raised to the highest degree the abundance of bacteria of the genera Cellulomonas, Kaistobacter, Pseudomonas, Rhodanobacter and fungi of the genera Penicillium, Humicola, Iodophanus, Meyerozyma. It has been determined that permethrin stimulates the multiplication of organotrophic bacteria and actinomycetes, decreases the counts of fungi and depresses the activity of all soil enzymes in unseeded soil. Zea mays is able to mitigate the effect of permethrin and can therefore be used as an effective phytoremediation plant.
Assuntos
Ascomicetos , Poluentes do Solo , Humanos , Solo/química , Permetrina/farmacologia , Bactérias/genética , Fosfatase Alcalina , Microbiologia do Solo , Poluentes do Solo/análiseRESUMO
Due to their ability to adsorb or absorb chemical pollutants, including organic compounds, sorbents are increasingly used in the reclamation of soils subjected to their pressure, which results from their high potential in eliminating xenobiotics. The precise optimization of the reclamation process is required, focused primarily on restoring the condition of the soil. This research are essential for seeking materials sufficiently potent to accelerate the remediation process and for expanding knowledge related to biochemical transformations that lead to the neutralization of these pollutants. The goal of this study was to determine and compare the sensitivity of soil enzymes to petroleum-derived products in soil sown with Zea mays, remediated using four sorbents. The study was conducted in a pot experiment, with loamy sand (LS) and sandy loam (SL) polluted with VERVA diesel oil (DO) and VERVA 98 petrol (P). Soil samples were collected from arable lands, and the effects of the tested pollutants were compared with those used as control uncontaminated soil samples in terms of Zea mays biomass and the activity of seven enzymes in the soil. The following sorbents were applied to mitigate DO and P effects on the test plants and enzymatic activity: molecular sieve (M), expanded clay (E), sepiolite (S), and Ikasorb (I). Both DO and P exerted a toxic effect on Zea mays, with DO more strongly disturbing its growth and development and the activities of soil enzymes than P. In sandy clay (SL), P was found to be a significant inhibitor of dehydrogenases (Deh), catalase (Cat), urease (Ure), alkaline phosphatase (Pal), and arylsulfatase (Aryl) activities, while DO stimulated the activity of all enzymes in this soil. The study results suggest that the sorbents tested, mainlya molecular sieve, may be useful in remediating DO-polluted soils, especially when alleviating the effects of these pollutants in soils of lower agronomic value.
RESUMO
Soil-dwelling microorganisms play an important role in the environment by decomposing organic matter, degrading toxic compounds and participating in the nutrient cycle. The microbiological properties of soil are determined mainly by the soil pH, granulometric composition, temperature and organic carbon content. In agricultural soils, these parameters are modified by agronomic operations, in particular fertilization. Soil enzymes participate in nutrient cycling and they are regarded as sensitive indicators of microbial activity and changes in the soil environment. The aim of the present study was to determine whether PAH content in soil is associated with the microbial activity and biochemical properties of soil during the growing season of spring barley treated with manure and mineral fertilizers. Soil samples for analysis were collected on four dates in 2015 from a long-term field experiment established in 1986 in Balcyny near Ostróda (Poland). The total content of PAHs was lowest in August (194.8 µg kg-1) and highest in May (484.6 µg kg-1), whereas the concentrations of heavier weight PAHs was highest in September (158.3 µg kg-1). The study demonstrated that weather conditions and microbial activity induced considerable seasonal variations in PAHs content. Manure increased the content of organic carbon and total nitrogen, the abundance of organotrophic, ammonifying and nitrogen-fixing bacteria, actinobacteria and fungi and enhanced the activity of soil enzymes, including dehydrogenases, catalase, urease, acid phosphatase and alkaline phosphatase.
Assuntos
Hordeum , Hidrocarbonetos Policíclicos Aromáticos , Solo/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Estações do Ano , Esterco , Carbono , Fertilização , Microbiologia do Solo , Fertilizantes/análiseRESUMO
Pyrethroids are insecticides most commonly used for insect control to boost agricultural production. The aim of the present research was to determine the effect of permethrin and cypermethrin on cultured and non-cultivated bacteria and fungi and on the activity of soil enzymes, as well as to determine the usefulness of Zea mays in mitigating the adverse effects of the tested pyrethroids on the soil microbiome. The analyses were carried out in the samples of both soil not sown with any plant and soil sown with Zea mays. Permethrin and cypermethrin were found to stimulate the multiplication of cultured organotrophic bacteria (on average by 38.3%) and actinomycetes (on average by 80.2%), and to inhibit fungi growth (on average by 31.7%) and the enzymatic activity of the soil, reducing the soil biochemical fertility index (BA) by 27.7%. They also modified the number of operational taxonomic units (OTUs) of the Actinobacteria and Proteobacteria phyla and the Ascomycota and Basidiomycota phyla. The pressure of permethrin and cypermethrin was tolerated well by the bacteria Sphingomonas (clone 3214512, 1052559, 237613, 1048605) and Bacillus (clone New.ReferenceOTU111, 593219, 578257), and by the fungi Penicillium (SH1533734.08FU, SH1692798.08FU) and Trichocladium (SH1615601.08FU). Both insecticides disturbed the growth and yielding of Zea mays, as a result of which its yield and leaf greenness index decreased. The cultivation of Zea mays had a positive effect on both soil enzymes and soil microorganisms and mitigated the anomalies caused by the tested insecticides in the microbiome and activity of soil enzymes. Permethrin decreased the yield of its aerial parts by 37.9% and its roots by 33.9%, whereas respective decreases caused by cypermethrin reached 16.8% and 4.3%.
Assuntos
Inseticidas , Microbiota , Piretrinas , Permetrina/farmacologia , Inseticidas/farmacologia , Solo/química , Piretrinas/farmacologia , Plantas , Bactérias , Fungos , Microbiologia do Solo , RizosferaRESUMO
Identification of pesticide impact on the soil microbiome is of the utmost significance today. Diagnosing the response of bacteria to tebuconazole, used for plant protection, may help isolate the most active bacteria applicable in the bioaugmentation of soils contaminated with this preparation. Bearing in mind the above, a study was undertaken to test the effect of tebuconazole on the diversity of bacteria at all taxonomic levels and on the activity of soil enzymes. It was conducted by means of standard and metagenomic methods. Its results showed that tebuconazole applied in doses falling within the ranges of good agricultural practice did not significantly disturb the biological homeostasis of soil and did not diminish its fertility. Tebuconazole was found to stimulate the proliferation of organotrophic bacteria and fungi, and also the activities of soil enzymes responsible for phosphorus, sulfur, and carbon metabolism. It did not impair the activity of urease responsible for urea hydrolysis, or cause any significant changes in the structure of bacterial communities. All analyzed soil samples were mainly populated by bacteria from the phylum Proteobacteria, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, Planctomycetes, and Chloroflexi. Bacteria from the genera Kaistobacter, Arthrobacter, and Streptomyces predominated in the soils contaminated with tebuconazole, whereas these from the Gemmata genus were inactivated by this preparation.
Assuntos
Microbiota , Solo , Solo/química , Microbiologia do Solo , Triazóis/farmacologia , Bactérias , RNA Ribossômico 16SRESUMO
Despite numerous studies on the influence of heavy metals on soil health, the search for effective, eco-friendly, and economically viable remediation substances is far from over. This encouraged us to carry out a study under strictly controlled conditions to test the effects of Cu2+, Ni2+, and Zn2+ added to soil in amounts of 150 mg·kg-1 d.m. of soil on the soil microbiome, on the activity of two oxidoreductases and five hydrolases, and on the growth and development of the sunflower Helianthus annunus L. The remediation substances were a molecular sieve, halloysite, sepiolite, expanded clay, zeolite, and biochar. It has been demonstrated that the most severe turbulences in the soil microbiome, its activity, and the growth of Helianthus annunus L. were caused by Ni2+, followed by Cu2+, and the mildest negative effect was produced by Zn2+. The adverse impact of heavy metals on the soil microbiome and its activity was alleviated by the applied sorbents. Their application also contributed to the increased biomass of plants, which is significant for the successful phytoextraction of these metals from soil. Irrespective of which property was analysed, sepiolite can be recommended for the remediation of soil polluted with Ni2+ and zeolite-for soil polluted with Cu2+ and Zn2+. Both sorbents mitigated to the highest degree disturbances caused by the tested metals in the soil environment.
RESUMO
The aim of this study was to assess the effect of long-term fertilization with manure and mineral fertilizers on the content and distribution of selected polycyclic aromatic hydrocarbons (PAHs)-the content of a sum of 16 polycyclic aromatic hydrocarbons, light and heavy PAHs in two soil layers (0-30 cm and 30-60 cm). The material for the study was composed of soil samples collected from the sixth rotation in a long-term, controlled field experiment, conducted in Balcyny since 1986. The content of 16 polycyclic aromatic hydrocarbons was determined on a gas chromatographer coupled with an FID detector. In order to evaluate the significance of differences between the mean effects on the tested characteristics, a non-parametric Mann-Whitney U test for two independent samples was applied. A higher content of the sum (16) of PAHs was found in the 0-30 cm than in the 30-60 cm soil layer. The research results also demonstrated a higher content of the sum of light PAHs in the 30-60 cm than in the 0-30 cm soil layer. The content of heavy PAHs, in turn, was significantly higher in the upper than in the deeper soil layer. This dependence appeared in both the soil fertilized with manure and soil nourished only with mineral fertilizers.
Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Fertilização , Fertilizantes , Esterco , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Poluentes do Solo/análiseRESUMO
An undesirable side effect of economic progress is increasingly severe pollution with heavy metals, responsible for the degradation of ecosystems, including soil resources. Hence, this research focused on examining six adsorbents in order to distinguish a reactive mineral with the highest capacity to remediate soils contaminated with heavy metals. To this end, the soil was polluted with Co2+ and Cd2+ by applying the metals in concentrations of 100 mg kg-1 d.m. The extent of soil equilibrium disturbances was assessed by evaluating the response of the soil microbiome, activity of seven soil enzymes, and the yields of Helianthus annuus L. Six sorbents were evaluated: a molecular sieve, expanded clay (ExClay), halloysite, zeolite, sepiolite and biochar. Co2+ and Cd2+ proved to be significant inhibitors of the soil's microbiological and biochemical parameters. Organotrophic bacteria among the analysed groups of microorganisms and dehydrogenases among the soil enzymes were most sensitive to the effects of the metals. Both metals significantly distorted the growth and development of sunflower, with Co2+ having a stronger adverse impact on the synthesis of chlorophyll. The molecular sieve and biochar were the sorbents that stimulated the multiplication of microorganisms and enzymatic activity in the contaminated soil. The activity of enzymes was also stimulated significantly by zeolite and sepiolite, while the growth of Helianthus annuus L. biomass was stimulated by the molecular sieve, which can all be considered the most useful reactive materials in the remediation of soils exposed to Co2+ and Cd2+.
RESUMO
Given their common use for disease treatment in humans, and particularly in animals, antibiotics pose an exceptionally serious threat to the soil environment. This study aimed to determine the response of soil bacteria and oxidoreductases to a tetracycline (Tc) contamination, and to establish the usability of grass compost (G) and Zea mays (Zm) in mitigating adverse Tc effects on selected microbial properties of the soil. The scope of microbiological analyses included determinations of bacteria with the conventional culture method and new-generation sequencing method (NGS). Activities of soil dehydrogenases and catalase were determined as well. Tc was found to reduce counts of organotrophic bacteria and actinobacteria in the soils as well as the activity of soil oxidoreductases. Soil fertilization with grass compost (G) and Zea mays (Zm) cultivation was found to alleviate the adverse effects of tetracycline on the mentioned group of bacteria and activity of oxidoreductases. The metagenomic analysis demonstrated that the bacteria belonging to Acidiobacteria and Proteobacteria phyla were found to prevail in the soil samples. The study results recommend soil fertilization with G and Zm cultivation as successful measures in the bioremediation of tetracycline-contaminated soils and indicate the usability of the so-called core bacteria in the bioaugmentation of such soils.
Assuntos
Compostagem , Poluentes do Solo , Animais , Antibacterianos/toxicidade , Bactérias/genética , Oxirredutases , Poaceae , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Tetraciclina/toxicidade , Zea maysRESUMO
The research objective was established by taking into account common sources of soil contamination with bisphenol A (B) and zinc (Zn2+), as well as the scarcity of data on the effect of metabolic pathways involved in the degradation of organic compounds on the complexation of zinc in soil. Therefore, the aim of this study was to determine the spectrum of soil homeostasis disorders arising under the pressure of both the separate and combined toxicity of bisphenol A and Zn2+. With a broad pool of indicators, such as indices of the effect of xenobiotics (IFX), humic acid (IFH), plants (IFP), colony development (CD), ecophysiological diversity (EP), the Shannon-Weaver and the Simpson indices, as well as the index of soil biological fertility (BA21), the extent of disturbances was verified on the basis of enzymatic activity, microbiological activity, and structural diversity of the soil microbiome. A holistic character of the study was achieved, having determined the indicators of tolerance (IT) of Sorghum Moench (S) and Panicum virgatum (P), the ratio of the mass of their aerial parts to roots (PR), and the SPAD leaf greenness index. Bisphenol A not only failed to perform a complexing role towards Zn2+, but in combination with this heavy metal, had a particularly negative effect on the soil microbiome and enzymatic activity. The NGS analysis distinguished certain unique genera of bacteria in all objects, representing the phyla Actinobacteriota and Proteobacteria, as well as fungi classified as members of the phyla Ascomycota and Basidiomycota. Sorghum Moench (S) proved to be more sensitive to the xenobiotics than Panicum virgatum (P).
Assuntos
Microbiota , Poluentes do Solo , Bactérias , Compostos Benzidrílicos , Fenóis , Solo/química , Microbiologia do Solo , Poluentes do Solo/química , Poluentes do Solo/toxicidade , Xenobióticos/toxicidade , Zinco/toxicidadeRESUMO
To decompose forest biomass, microorganisms use specific enzymes from the class of oxidoreductases and hydrolases, which are produced by bacteria and soil fungi. In post-agricultural forest soils, bacteria adapt more easily to changing ecological conditions than fungi. The unique features of bacteria, i.e., tolerance and the ability to degrade a wide range of chemical compounds, prompted us to conduct research that contributes to the improvement of the broadly understood circular management of biomass production and economic efficiency. This study aimed to analyze changes in the microbiological activity and the activities of dehydrogenases, catalase, ß-glucosidase, urease, arylsulfatase, acid phosphatase, and alkaline phosphatase in the soil sampled from under Picea abies (Pa), Pinus sylvestris (Ps), Larix decidua (Ld), Quercus robur (Qr), and Betula pendula (Bp), after 19 years. The control object was unforested soil. The studies allowed one to demonstrate the relationship between the activity of soil enzymes and the assemblages of culturable microorganisms and bacteria determined by the metagenomic method and tree species. Thus, it is possible to design the selection of tree species catalyzing enzymatic processes in soil. The strongest growth promoter of microorganisms turned out to be Quercus robur L., followed by Picea abies L., whereas the weakest promoters appeared to be Pinus sylvestris L. and Larix decidua M.
RESUMO
Among the large group of xenobiotics released into the environment, petroleum derivatives are particularly dangerous, especially given continuing industrial development and the rising demand for fuel. As increasing amounts of fly ash and sewage sludge are released, it becomes necessary to explore new methods of reusing these types of waste as reclamation agents or nutrient sources. The present study examined how soil contamination with Eco-Diesel oil (0; 10; 20 cm3 kg-1 soil) affected the trace-element content in the aerial parts of maize. Coal and sludge ashes were used as reclamation agents. Our study revealed that diesel oil strongly affected the trace-element content in the aerial parts of maize. In the non-amended group, Eco-Diesel oil contamination led to higher accumulation of the trace elements in maize (with the exception of Pb and Ni), with Cu and Mn content increasing the most. The ashes incorporated into the soil performed inconsistently as a reclamation agent. Overall, the amendment reduced Mn and Fe in the aerial parts of maize while increasing average Cd and Cu levels. No significant effect was noted for the other elements.
Assuntos
Cinza de Carvão/química , Óleos Combustíveis/análise , Metais Pesados/análise , Poluentes do Solo/análise , Zea mays/química , Poluição Ambiental , Gasolina/análise , Solo/química , Oligoelementos/análiseRESUMO
Petroleum hydrocarbons, as aggressive components of diesel oils, after migration to the land environment can alter the activity and efficiency of ecosystems. They can also be dangerous to animal and human health. Eco-friendly methods for the reclamation of affected soils is necessary to manage degraded lands. One such method is the use of ashes. The aim of this research was to determine how soil pollution with diesel oil (brand name, Eco-Diesel) affects the chemical composition of maize (Zea mays L.) and whether the application of ash from a combined heat and power plant, as well as from sewage sludge incineration, could reduce the potentially adverse impact of diesel oil on plants. The research results demonstrated that soil contamination with Eco-Diesel oil modified the content of selected macronutrients in the analyzed crop plant. Eco-Diesel oil had a negative effect on maize yield. The highest diesel oil dose in a series without neutralizing substances had a positive effect on the accumulation of most elements, except nitrogen and sodium. Soil enrichment with ash differentiated the content of macronutrients, mainly nitrogen and phosphorus, in the aerial biomass of maize. The ashes increased the yield of maize and content of some macronutrients, mainly nitrogen but also calcium, the latter in a series where soil was treated with ash from sewage sludge thermal recycling. Both types of ash also resulted in a decrease in the plant content of phosphorus, while ash from hard coal caused a slight reduction in the content of potassium in maize. Ash of different origins can be an effective solution in the reclamation of degraded soils, which may then be used for growing energy crops.
RESUMO
Chromium is used in many settings, and hence, it can easily enter the natural environment. It exists in several oxidation states. In soil, depending on its oxidation-reduction potential, it can occur in bivalent, trivalent or hexavalent forms. Hexavalent chromium compounds are cancerogenic to humans. The aim of this study was to determine the effect of Cr(VI) on the structure of bacteria and fungi in soil, to find out how this effect is modified by humic acids and to determine the response of Zea mays to this form of chromium. A pot experiment was conducted to answer the above questions. Zea mays was sown in natural soil and soil polluted with Cr(VI) in an amount of 60 mg kg-1 d.m. Both soils were treated with humic acids in the form of HumiAgra preparation. The ecophysiological and genetic diversity of bacteria and fungi was assayed in soil under maize (not sown with Zea mays). In addition, the following were determined: yield of maize, greenness index, index of tolerance to chromium, translocation index and accumulation of chromium in the plant. It has been determined that Cr(VI) significantly distorts the growth and development of Zea mays, while humic acids completely neutralize its toxic effect on the plant. This element had an adverse effect on the development of bacteria of the genera Cellulosimicrobium, Kaistobacter, Rhodanobacter, Rhodoplanes and Nocardioides and fungi of the genera Chaetomium and Humicola. Soil contamination with Cr(VI) significantly diminished the genetic diversity and richness of bacteria and the ecophysiological diversity of fungi. The negative impact of Cr(VI) on the diversity of bacteria and fungi was mollified by Zea mays and the application of humic acids.
Assuntos
Poluentes do Solo , Solo , Humanos , Solo/química , Zea mays , Substâncias Húmicas , Cromo/toxicidade , Cromo/análise , Plantas , Bactérias , Poluentes do Solo/toxicidadeRESUMO
Bisphenol A (BPA), with its wide array of products and applications, is currently one of the most commonly produced chemicals in the world. A narrow pool of data on BPA-microorganism-plant interaction mechanisms has stimulated the following research, the aim of which has been to determine the response of the soil microbiome and crop plants, as well as the activity of soil enzymes exposed to BPA pressure. A range of disturbances was assessed, based on the activity of seven soil enzymes, an abundance of five groups of microorganisms, and the structural diversity of the soil microbiome. The condition of the soil was verified by determining the values of the indices: colony development (CD), ecophysiological diversity (EP), the Shannon-Weaver index, and the Simpson index, tolerance of soil enzymes, microorganisms and plants (TIBPA), biochemical soil fertility (BA21), the ratio of the mass of aerial parts to the mass of plant roots (PR), and the leaf greenness index: Soil and Plant Analysis Development (SPAD). The data brought into sharp focus the adverse effects of BPA on the abundance and ecophysiological diversity of fungi. A change in the structural composition of bacteria was noted. Bisphenol A had a more beneficial effect on the Proteobacteria than on bacteria from the phyla Actinobacteria or Bacteroidetes. The microbiome of the soil exposed to BPA was numerously represented by bacteria from the genus Sphingomonas. In this object pool, the highest fungal OTU richness was achieved by the genus Penicillium, a representative of the phylum Ascomycota. A dose of 1000 mg BPA kg-1 d.m. of soil depressed the activity of dehydrogenases, urease, acid phosphatase and ß-glucosidase, while increasing that of alkaline phosphatase and arylsulfatase. Spring oilseed rape and maize responded significantly negatively to the soil contamination with BPA.
Assuntos
Bactérias/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Brassica napus/efeitos dos fármacos , Enzimas/metabolismo , Fenóis/toxicidade , Microbiologia do Solo , Solo/química , Zea mays/efeitos dos fármacos , Poluentes Ocupacionais do Ar/toxicidade , Fungos/efeitos dos fármacosRESUMO
Soil contamination with cresol is a problem of the 21st century and poses a threat to soil microorganisms, humans, animals, and plants. The lack of precise data on the potential toxicity of o-cresol in soil microbiome and biochemical activity, as well as the search for effective remediation methods, inspired the aim of this study. Soil is subjected to four levels of contamination with o-cresol: 0, 0.1, 1, 10, and 50 mg o-cresol kg-1 dry matter (DM) of soil and the following are determined: the count of eight groups of microorganisms, colony development index (CD) and ecophysiological diversity index (EP) for organotrophic bacteria, actinobacteria and fungi, and the bacterial genetic diversity. Moreover, the responses of seven soil enzymes are investigated. Perna canaliculus is a recognized biosorbent of organic pollutants. Therefore, microbial biostimulation with Perna canaliculus shells is used to eliminate the negative effect of the phenolic compound on the soil microbiome. Fungi appears to be the microorganisms most sensitive to o-cresol, while Pseudomonas sp. is the least sensitive. In o-cresol-contaminated soils, the microbiome is represented mainly by the bacteria of the Proteobacteria and Firmicutes phyla. Acid phosphatase, alkaline phosphatase and urease can be regarded as sensitive indicators of soil disturbance. Perna canaliculus shells prove to be an effective biostimulator of soil under pressure with o-cresol.
RESUMO
The aim of the research was to determine the effect of soil contamination with diesel oil (0; 5; 10 and 15 cm3 kg-1 of soil) on the content of trace elements in the aboveground parts of oat (Avena sativa L.). Stabilised sewage sludge was used to mitigate the likely negative impact of diesel oil on the plant. Growing soil contamination with diesel oil had a significant impact on the content of trace elements in the aboveground biomass of oat. In the series without sewage sludge, the contents of the analysed elements, except for chromium, zinc, copper and cobalt, were positively correlated with the increasing doses of diesel oil. The largest increase in the content was recorded in the case of manganese. The sewage sludge used to reduce the influence of diesel oil on the chemical composition of oat had a positive effect on the content of the analysed trace elements. Compared to the series without the addition of a stabilised sewage sludge, it contributed to a reduction in the average content of chromium, nickel, copper, manganese and cobalt in the aboveground parts of oat plants. No significant effect of the applied remediation treatment was noted for cadmium, and the results were equivocal for iron.