Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 13(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124666

RESUMO

Objectives: Evaluate the prevalence of genetic factors in a large population of infertile subjects and define the seminological, hormonal, and ultrasonographic features for each alteration. Methods: This single-center retrospective study included male partners of infertile couples undergoing genetic investigations due to oligozoospermia or azoospermia evaluated from January 2012 to January 2022. The genetic investigations consist of karyotype, CFTR gene mutations plus variant of the IVS8-5T polymorphic trait, Y chromosome microdeletion, and Next Generation Sequencing panel to analyze genes implicated in congenital hypogonadotropic hypogonadism (CHH). Results: Overall, 15.4% (72/466) of patients received a diagnosis of genetic cause of infertility. Specifically, 23 patients (31.9%) harbor mutations in the CFTR gene, 22 (30.6%) have a 47, XXY karyotype, 14 (19.4%) patients show a Y chromosome microdeletion, 7 (9.7%) have structural chromosomal anomalies, and 6 (8.3%) have CHH. Overall, 80.6% of patients were azoospermic and 19.4% oligozoospermic (sperm concentration 3.5 ± 3.8 million/mL). Almost all patients presented hormonal alterations related to the specific genotype, while the main ultrasound alterations were testicular hypoplasia, calcifications/microcalcifications, and enlarged/hyperechoic epididymis. Conclusions: The prevalence of genetic abnormalities in males of infertile couples was 15.4% in our Center. CFTR gene disease-causing variants resulted in more frequent, with various clinical features, highlighting the complexity and heterogeneity of the presentation. Other investigations are needed to understand if conditions like ring chromosomes and other translocations are related to infertility or are incidental factors.

2.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063241

RESUMO

Opioids are commonly used for the management of severe chronic cancer pain. Their well-known pharmacological effects on the gastrointestinal system, particularly opioid-induced constipation (OIC), are the most common limiting factors in the optimization of analgesia, and have led to the wide use of laxatives and/or peripherally acting mu-opioid receptor antagonists (PAMORAs). A growing interest has been recently recorded in the possible effects of opioid treatment on the gut microbiota. Preclinical and clinical data, as presented in this review, showed that alterations of the gut microbiota play a role in modulating opioid-mediated analgesia and tolerability, including constipation. Moreover, due to the bidirectional crosstalk between gut bacteria and the central nervous system, gut dysbiosis may be crucial in modulating opioid reward and addictive behavior. The microbiota may also modulate pain regulation and tolerance, by activating microglial cells and inducing the release of inflammatory cytokines and chemokines, which sustain neuroinflammation. In the subset of cancer patients, the clinical meaning of opioid-induced gut dysbiosis, particularly its possible interference with the efficacy of chemotherapy and immunotherapy, is still unclear. Gut dysbiosis could be a new target for treatment in cancer patients. Restoring the physiological amount of specific gut bacteria may represent a promising therapeutic option for managing gastrointestinal symptoms and optimizing analgesia for cancer patients using opioids.


Assuntos
Analgésicos Opioides , Dor do Câncer , Disbiose , Microbioma Gastrointestinal , Humanos , Disbiose/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/uso terapêutico , Dor do Câncer/tratamento farmacológico , Dor do Câncer/etiologia , Animais , Neoplasias/complicações , Neoplasias/tratamento farmacológico
3.
Redox Biol ; 75: 103243, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38906011

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is characterized by disrupted glucose homeostasis and metabolic abnormalities, with oxidative stress and inflammation playing pivotal roles in its pathophysiology. Poly(ADP-ribosyl)ation (PARylation) is a post-translational process involving the addition of ADP-ribose polymers (PAR) to target proteins. While preclinical studies have implicated PARylation in the interplay between oxidative stress and inflammation in T2DM, direct clinical evidence in humans remains limited. This study investigates the relationship between oxidative stress, PARylation, and inflammatory response in T2DM patients. METHODS: This cross-sectional investigation involved 61 T2DM patients and 48 controls. PAR levels were determined in peripheral blood cells (PBMC) by ELISA-based methodologies. Oxidative stress was assessed in plasma and PBMC. In plasma, we monitored reactive oxygen metabolites (d-ROMs) and ferric-reducing antioxidant power. In PBMC, we measured the expression of antioxidant enzymes SOD1, GPX1 and CAT by qPCR. Further, we evaluated the expression of inflammatory mediators such as IL6, TNF-α, CD68 and MCP1 by qPCR in PBMC. RESULTS: T2DM patients exhibited elevated PAR levels in PBMC and increased d-ROMs in plasma. Positive associations were found between PAR levels and d-ROMs, suggesting a link between oxidative stress and altered PAR metabolism. Mediation analysis revealed that d-ROMs mediate the association between HbA1c levels and PAR, indicating oxidative stress as a potential driver of increased PARylation in T2DM. Furthermore, elevated PAR levels were found to be associated with increased expression of pro-inflammatory cytokines IL6 and TNF-α in the PBMC of T2DM patients. CONCLUSIONS: This study highlights that hyperactivation of PARylation is associated with poor glycemic control and the resultant oxidative stress in T2DM. The increase of PAR levels is correlated with the upregulation of key mediators of the inflammatory response. Further research is warranted to validate these findings and explore their clinical implications.

4.
Curr Issues Mol Biol ; 46(6): 5322-5336, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38920990

RESUMO

Among the pathophysiological correlates of schizophrenia, recent research suggests a potential role for the Hedgehog (Hh) signalling pathway, which has been traditionally studied in embryonic development and oncology. Its dysregulation may impact brain homeostasis, neuroplasticity, and potential involvement in neural processes. This systematic review provides an overview of the involvement of Hh signalling in the pathophysiology of schizophrenia and antipsychotic responses. We searched the PubMed and Scopus databases to identify peer-reviewed scientific studies focusing on Hh and schizophrenia, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, finally including eight studies, including three articles focused on patients with schizophrenia, two animal models of schizophrenia, two animal embryo studies, and one cellular differentiation study. The Hh pathway is crucial in the development of midbrain dopaminergic neurons, neuroplasticity mechanisms, regulating astrocyte phenotype and function, brain-derived neurotrophic factor expression, brain glutamatergic neural transmission, and responses to antipsychotics. Overall, results indicate an involvement of Hh in the pathophysiology of schizophrenia and antipsychotic responses, although an exiguity of studies characterises the literature. The heterogeneity between animal and human studies is another main limitation. Further research can lead to better comprehension and the development of novel personalised drug treatments and therapeutic interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA