Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 121(15): 2882-2894, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35794828

RESUMO

Plastic environmental pollution is a major issue that our generation must face to protect our planet. Plastic recycling has the potential not only to reduce the pollution but also to limit the need for fossil-fuel-based production of new plastics. Enzymes capable of breaking down plastic could thereby support such a circular economy. Polyethylene terephthalate (PET) degrading enzymes have recently attracted considerable interest and have been subjected to intensive enzyme engineering to improve their characteristics. A quadruple mutant of Leaf-branch Compost Cutinase (LCC) was identified as a most efficient and promising enzyme. Here, we use NMR to follow the initial LCC enzyme through its different mutations that lead to its improved performance. We experimentally define the two calcium-binding sites and show their importance on the all-or-nothing thermal unfolding process, which occurs at a temperature of 72°C close to the PET glass transition temperature. Using various NMR probes such as backbone amide, methyl group, and histidine side-chain resonances, we probe the interaction of the enzymes with mono-(2-hydroxyethyl)terephthalic acid. The latter experiments are interpreted in terms of accessibility of the active site to the polymer chain.


Assuntos
Plásticos , Polietilenotereftalatos , Plásticos/química , Temperatura
2.
Artigo em Inglês | MEDLINE | ID: mdl-33195110

RESUMO

Polylactic acid is a plastic polymer widely used in different applications from printing filaments for 3D printer to mulching films in agriculture, packaging materials, etc. Here, we report the production of poly-D-lactic acid (PDLA) in an engineered yeast strain of Yarrowia lipolytica. Firstly, the pathway for lactic acid consumption in this yeast was identified and interrupted. Then, the heterologous pathway for PDLA production, which contains a propionyl-CoA transferase (PCT) converting lactic acid into lactyl-CoA, and an evolved polyhydroxyalkanoic acid (PHA) synthase polymerizing lactyl-CoA, was introduced into the engineered strain. Among the different PCT proteins that were expressed in Y. lipolytica, the Clostridium propionicum PCT exhibited the highest efficiency in conversion of D-lactic acid to D-lactyl-CoA. We further evaluated the lactyl-CoA and PDLA productions by expressing this PCT and a variant of Pseudomonas aeruginosa PHA synthase at different subcellular localizations. The best PDLA production was obtained by expressing the PCT in the cytosol and the variant of PHA synthase in peroxisome. PDLA homopolymer accumulation in the cell reached 26 mg/g-DCW, and the molecular weights of the polymer (Mw = 50.5 × 103 g/mol and Mn = 12.5 × 103 g/mol) were among the highest reported for an in vivo production.

3.
ACS Synth Biol ; 9(9): 2562-2575, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32786349

RESUMO

CRISPR/Cas9 is a powerful tool to edit the genome of the yeast Yarrowia lipolytica. Here, we design a simple and robust method to knockout multiple gene families based on the construction of plasmids enabling the simultaneous expression of several sgRNAs. We exemplify the potency of this approach by targeting the well-characterized acyl-CoA oxidase family (POX) and the uncharacterized SPS19 family. We establish a correlation between the high lethality observed upon editing multiple loci and chromosomal translocations resulting from the simultaneous generation of several double-strand breaks (DSBs) and develop multiplex gene editing strategies. Using homologous directed recombination to reduce chromosomal translocations, we demonstrated that simultaneous editing of four genes can be achieved and constructed a strain carrying a sextuple deletion of POX genes. We explore an "excision approach" by simultaneously performing two DSBs in genes and reached 73 to 100% editing efficiency in double disruptions and 41.7% in a triple disruption. This work led to identifying SPS193 as a gene encoding a 2-4 dienoyl-CoA reductase, demonstrating the potential of this method to accelerate knowledge on gene function in expanded gene families.


Assuntos
Edição de Genes/métodos , Acil-CoA Oxidase/genética , Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla , Plasmídeos/genética , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Yarrowia/enzimologia
4.
Commun Biol ; 3(1): 199, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350406

RESUMO

The efficient use of the yeast Yarrowia lipolytica as a cell factory is hampered by the lack of powerful genetic engineering tools dedicated for the assembly of large DNA fragments and the robust expression of multiple genes. Here we describe the design and construction of artificial chromosomes (ylAC) that allow easy and efficient assembly of genes and chromosomal elements. We show that metabolic pathways can be rapidly constructed by various assembly of multiple genes in vivo into a complete, independent and linear supplementary chromosome with a yield over 90%. Additionally, our results reveal that ylAC can be genetically maintained over multiple generations either under selective conditions or, without selective pressure, using an essential gene as the selection marker. Overall, the ylACs reported herein are game-changing technology for Y. lipolytica, opening myriad possibilities, including enzyme screening, genome studies and the use of this yeast as a previous unutilized bio-manufacturing platform.


Assuntos
Cromossomos Artificiais de Levedura , Regulação Fúngica da Expressão Gênica , Microbiologia Industrial , Yarrowia/genética , Vias Biossintéticas , Celobiose/metabolismo , Regulação Enzimológica da Expressão Gênica , Xilose/metabolismo , Yarrowia/enzimologia
5.
Biotechnol Bioeng ; 116(10): 2451-2462, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31282998

RESUMO

Claviceps purpurea bifunctional Δ12-hydroxylase/desaturase, CpFAH12, and monofunctional desaturase CpFAD2, share 86% of sequence identity. To identify the underlying determinants of the hydroxylation/desaturation specificity, chimeras of these two enzymes were tested for their fatty acid production in an engineered Yarrowia lipolytica strain. It reveals that transmembrane helices are not involved in the hydroxylation/desaturation specificity whereas all cytosolic domains have an impact on it. Especially, replacing the CpFAH12 cytosolic part near the second histidine-box by the corresponding CpFAD2 part annihilates all hydroxylation activity. Further mutagenesis experiments within this domain identified isoleucine 198 as the crucial element for the hydroxylation activity of CpFAH12. Monofunctional variants performing the only desaturation were obtained when this position was exchanged by the threonine of CpFAD2. Saturation mutagenesis at this position showed modulation in the hydroxylation/desaturation specificity in the different variants. The WT enzyme was demonstrated as the most efficient for ricinoleic acid production and some variants showed a better desaturation activity. A model based on the recently discovered membrane desaturase structures indicate that these changes in specificity are more likely due to modifications in the di-iron center geometry rather than changes in the substrate binding mode.


Assuntos
Claviceps/enzimologia , Ácidos Graxos Dessaturases/química , Proteínas Fúngicas/química , Domínio Catalítico , Claviceps/genética , Ácidos Graxos Dessaturases/genética , Proteínas Fúngicas/genética , Hidroxilação , Mutagênese , Domínios Proteicos
6.
Microb Cell Fact ; 18(1): 99, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151440

RESUMO

BACKGROUND: The oleaginous yeast Yarrowia lipolytica is an organism of choice for the tailored production of various compounds such as biofuels or biopolymers. When properly engineered, it is capable of producing medium-chain-length polyhydroxyalkanoate (mcl-PHA), a biobased and biodegradable polymer that can be used as bioplastics or biopolymers for environmental and biomedical applications. RESULTS: This study describes the bioproduction and the main properties of two different mcl-PHA polymers. We generated by metabolic engineering, strains of Y. lipolytica capable of accumulating more than 25% (g/g) of mcl-PHA polymers. Depending of the strain genetic background and the culture conditions, we produced (i) a mcl-PHA homopolymer of 3-hydroxydodecanoic acids, with a mass-average molar mass (Mw) of 316,000 g/mol, showing soft thermoplastic properties with potential applications in packaging and (ii) a mcl-PHA copolymer made of 3-hydroxyoctanoic (3HO), decanoic (3HD), dodecanoic (3HDD) and tetradecanoic (3TD) acids with a Mw of 128,000 g/mol, behaving like a thermoplastic elastomer with potential applications in biomedical material. CONCLUSION: The ability to engineer Y. lipolytica to produce tailored PHAs together with the range of possible applications regarding their biophysical and mechanical properties opens new perspectives in the field of PHA bioproduction.


Assuntos
Engenharia Metabólica , Poli-Hidroxialcanoatos/biossíntese , Yarrowia/metabolismo , Microrganismos Geneticamente Modificados , Poli-Hidroxialcanoatos/química , Yarrowia/genética
7.
J Mol Biol ; 430(21): 4293-4306, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30227135

RESUMO

Yarrowia lipolytica is an oleaginous yeast of growing industrial interest for biotechnological applications. In the last few years, genome edition has become an easier and more accessible prospect with the world wild spread development of CRISPR/Cas9 technology. In this study, we focused our attention on the production of the two key elements of the CRISPR-Cas9 ribonucleic acid protein complex in this non-conventional yeast. The efficiency of NHEJ-induced knockout was measured by time-course monitoring using multiple parameters flow cytometry, as well as phenotypic and genotypic observations, and linked to nuclease production levels showing that its strong overexpression is unnecessary. Thus, the limiting factor for the generation of a functional ribonucleic acid protein complex clearly resides in guide expression, which was probed by testing different linker lengths between the transfer RNA promoter and the sgRNA. The results highlight a clear deleterious effect of mismatching bases at the 5' end of the target sequence. For the first time in yeast, an investigation of its maturation from the primary transcript was undertaken by sequencing multiple sgRNAs extracted from the host. These data provide insights into of the yeast small RNA processing, from synthesis to maturation, and suggests a pathway for their degradation in Y. lipolytica. Subsequently, a whole-genome sequencing of a modified strain detected no abnormal modification due to off-target effects, confirming CRISPR/Cas9 as a safe strategy for editing Y. lipolytica genome. Finally, the optimized system was used to promote in vivo directed mutagenesis via homology-directed repair with a ssDNA oligonucleotide.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Yarrowia/genética , Genoma Fúngico , Regiões Promotoras Genéticas
8.
Microb Cell Fact ; 17(1): 142, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30200978

RESUMO

BACKGROUND: Oleaginous yeast Yarrowia lipolytica is an organism of choice for the development of biofuel and oleochemicals. It has become a chassis for metabolic engineering in order to produce targeted lipids. Understanding the function of key-enzymes involved in lipid metabolism is essential to design better routes for enhanced lipid production and for strains producing lipids of interest. Because medium chain fatty acids (MCFA) are valuable compounds for biokerosene production, we previously generated strains capable of producing MCFA up to 12% of total lipid content (Rigouin et al. in ACS Synth Biol 6:1870-1879, 2017). In order to improve accumulation and content of C14 fatty acid (FA), the elongation, degradation and accumulation of these MCFA in Yarrowia lipolytica were studied. RESULTS: We brought evidence of the role of YALI0F0654 (YlELO1) protein in the elongation of exogenous or de novo synthesized C14 FA into C16 FA and C18 FA. YlELO1 deletion into a αFAS_I1220W expressing strain leads to the sole production of C14 FA. However, because this strain does not provide the FA essential for its growth, it requires being cultivated with essential fatty acids and C14 FA yield is limited. To promote MCFA accumulation in Y. lipolytica without compromising the growth, we overexpressed a plant diglyceride acyltransferase specific for MCFA and reached an accumulation of MCFA up to 45% of total lipid content. CONCLUSION: We characterized the role of YlELO1 in Y. lipolytica by proving its involvement in Medium chain fatty acids elongation. We showed that MCFA content can be increased in Yarrowia lipolytica by promoting their accumulation into a stable storage form (triacylglycerides) to limit their elongation and their degradation.


Assuntos
Ácidos Graxos/metabolismo , Engenharia Metabólica/métodos , Yarrowia/metabolismo
9.
ACS Synth Biol ; 6(10): 1870-1879, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28585817

RESUMO

Yarrowia lipolytica is a promising organism for the production of lipids of biotechnological interest and particularly for biofuel. In this study, we engineered the key enzyme involved in lipid biosynthesis, the giant multifunctional fatty acid synthase (FAS), to shorten chain length of the synthesized fatty acids. Taking as starting point that the ketoacyl synthase (KS) domain of Yarrowia lipolytica FAS is directly involved in chain length specificity, we used molecular modeling to investigate molecular recognition of palmitic acid (C16 fatty acid) by the KS. This enabled to point out the key role of an isoleucine residue, I1220, from the fatty acid binding site, which could be targeted by mutagenesis. To address this challenge, TALEN (transcription activator-like effector nucleases)-based genome editing technology was applied for the first time to Yarrowia lipolytica and proved to be very efficient for inducing targeted genome modifications. Among the generated FAS mutants, those having a bulky aromatic amino acid residue in place of the native isoleucine at position 1220 led to a significant increase of myristic acid (C14) production compared to parental wild-type KS. Particularly, the best performing mutant, I1220W, accumulates C14 at a level of 11.6% total fatty acids. Overall, this work illustrates how a combination of molecular modeling and genome-editing technology can offer novel opportunities to rationally engineer complex systems for synthetic biology.


Assuntos
Ácido Graxo Sintases/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Yarrowia/enzimologia , Transporte Biológico/genética , Transporte Biológico/fisiologia , Ácido Graxo Sintases/genética , Ácidos Graxos/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Yarrowia/genética , Yarrowia/metabolismo
10.
Biochim Biophys Acta ; 1840(10): 3106-14, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25016078

RESUMO

BACKGROUND: The detailed characterization of arabinoxylan-active enzymes, such as double-substituted xylan arabinofuranosidase activity, is still a challenging topic. Ad hoc chromogenic substrates are useful tools and can reveal subtle differences in enzymatic behavior. In this study, enzyme selectivity on natural substrates has been compared with enzyme selectivity towards aryl-glycosides. This has proven to be a suitable approach to understand how artificial substrates can be used to characterize arabinoxylan-active α-l-arabinofuranosidases (Abfs). METHODS: Real-time NMR using a range of artificial chromogenic, synthetic pseudo-natural and natural substrates was employed to determine the hydrolytic abilities and specificity of different Abfs. RESULTS: The way in which synthetic di-arabinofuranosylated substrates are hydrolyzed by Abfs mirrors the behavior of enzymes on natural arabinoxylo-oligosaccharide (AXOS). Family GH43 Abfs that are strictly specific for mono-substituted d-xylosyl moieties (AXH-m) do not hydrolyze synthetic di-arabinofuranosylated substrates, while those specific for di-substituted moieties (AXH-d) remove a single l-arabinofuranosyl (l-Araf) group. GH51 Abfs, which are supposedly AXH-m enzymes, can release l-Araf from disubstituted d-xylosyl moieties, when these are non-reducing terminal groups. CONCLUSIONS AND GENERAL SIGNIFICANCE: The present study reveals that although the activity of Abfs on artificial substrates can be quite different from that displayed on natural substrates, enzyme specificity is well conserved. This implies that carefully chosen artificial substrates bearing di-arabinofuranosyl d-xylosyl moieties are convenient tools to probe selectivity in new Abfs. Moreover, this study has further clarified the relative promiscuity of GH51 Abfs, which can apparently hydrolyze terminal disubstitutions in AXOS, albeit less efficiently than mono-substituted motifs.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Glicosídeo Hidrolases/química , Oligossacarídeos/química , Bacillus/genética , Proteínas de Bactérias/genética , Glicosídeo Hidrolases/genética , Ressonância Magnética Nuclear Biomolecular , Oligossacarídeos/genética , Especificidade por Substrato/fisiologia
11.
Chembiochem ; 13(13): 1885-8, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22887844

RESUMO

Selecting wall-nibblers: Three 4-nitrocatechol derivatives were designed to facilitate high-throughput screening of arabinofuranose hydrolases, enzymes that typically digest plant cell walls. The designed compounds can be used in solid and liquid media, and, importantly, one allows the specific detection of AXH-d, a specialized enzyme that only releases L-arabinose from disubstituted D-xylosyl moieties.


Assuntos
Arabinose/análogos & derivados , Catecóis/metabolismo , Ensaios Enzimáticos/métodos , Escherichia coli/enzimologia , Nitrocompostos/metabolismo , Arabinose/química , Arabinose/metabolismo , Catecóis/química , Colorimetria/métodos , Escherichia coli/metabolismo , Hidrólise , Nitrocompostos/química
12.
J Med Chem ; 52(23): 7503-11, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19842664

RESUMO

Transmissible spongiform encephalopathies (TSEs) are a family of invariably fatal neurodegenerative disorders for which no effective curative therapy currently exists. We report here the synthesis of a library of indole-3-glyoxylamides and their evaluation as potential antiprion agents. A number of compounds demonstrated submicromolar activity in a cell line model of prion disease together with a defined structure-activity relationship, permitting the design of more potent compounds that effected clearance of scrapie in the low nanomolar range. Thus, the indole-3-glyoxylamides described herein constitute ideal candidates to progress to further development as potential therapeutics for the family of human prion disorders.


Assuntos
Amidas/química , Amidas/farmacologia , Indóis/química , Doenças Priônicas/patologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Amidas/síntese química , Amidas/uso terapêutico , Aminas/química , Animais , Linhagem Celular , Desenho de Fármacos , Camundongos , Doenças Priônicas/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/uso terapêutico , Relação Estrutura-Atividade
13.
Org Biomol Chem ; 7(18): 3826-35, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19707689

RESUMO

We describe the synthesis of 2'-deoxyuridine-5'-triphosphate derivatives bearing linkers of varying length, bulk and flexibility, at position 5 of the pyrimidine base. Nucleotide analogues with terminal functional groups are of interest due to their application potential for the functional labelling of DNA strands. In the course of the synthesis of the nucleotide analogues, the methodology for the Yoshikawa phosphorylation procedure was optimised, resulting in an approach which reduces the amount of side-products and is compatible with labile functional groups attached to the base. The effect of linker composition on the enzymatic incorporation into DNA was systematically investigated using two different DNA polymerases. Deep Vent(R) exo(-) from the B-polymerase family accepted most nucleotide analogues as substrates, while Taq from the A-family was slightly less proficient. Both polymerases had difficulties incorporating 5-(3-amino-prop-1-ynyl)-2'-deoxyuridine triphosphate. A molecular model of the active site of the polymerase was used to rationalise why this nucleotide was not accepted as a substrate.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos de Desoxiuracil/síntese química , Nucleotídeos de Desoxiuracil/metabolismo , Taq Polimerase/metabolismo , Acetileno/química , Aminas/química , Sequência de Aminoácidos , Sequência de Bases , Biocatálise , Domínio Catalítico , Nucleotídeos de Desoxiuracil/química , Idoxuridina/química , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Fosforilação
14.
J Am Chem Soc ; 131(22): 7530-1, 2009 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-19441786

RESUMO

The labeling of nucleotides and oligonucleotides with reporter groups is an important tool in the sequence-specific sensing of DNA, as exemplified by fluorescence tags. Here we show that chemical tags can encode sequence information for electrical nanopore recordings. In nanopore recordings, individual DNA strands are electrophoretically driven through a nanoscale pore leading to detectable blockades of ionic current. The tags cause characteristic electrical signatures in the current blockades of translocating DNA strands and thereby encode sequence information. The viability of the strategy is demonstrated by discriminating between drug resistance-conferring point mutations. By being independent of pore engineering, the new approach can potentially enhance the sensing repertoire of durable solid-state nanopores for which alternative sensing strategies developed for protein pores are not easily accessible.


Assuntos
DNA/química , Nanoestruturas/química , Nucleotídeos/química , Oligonucleotídeos/química , DNA/genética , Eletroforese/métodos , Corantes Fluorescentes/química , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Nucleotídeos/genética , Oligonucleotídeos/genética , Polimorfismo de Nucleotídeo Único
15.
Nucleic Acids Res ; 37(5): 1477-85, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19139071

RESUMO

We explore the potential of the Diels-Alder cycloaddition for the functional tagging of DNA strands. A deoxyuridine triphosphate derivative carrying a diene at position 5 of the pyrimidine base was synthesized using a two-step procedure. The derivative was efficiently accepted as substrate in enzymatic polymerization assays. Diene carrying strands underwent successful cycloaddition with maleimide-terminated fluorescence dyes and a polymeric reagent. Furthermore, a nucleotide carrying a peptide via a Diels-Alder cyclohexene linkage was prepared and sequence-specifically incorporated into DNA. The Diels-Alder reaction presents a number of positive attributes such as good chemoselectivity, water compatibility, high-yield under mild conditions and no additional reagents apart from a diene and a dienophile. Furthermore, suitable dienophiles are commercially available in the form of maleimide-derivatives of fluorescent dyes and bioaffinity tags. Based on these advantages, diene- and cyclohexene-based nucleotide triphosphates are expected to find wider use in the area of nucleic acid chemistry.


Assuntos
DNA/química , Nucleotídeos de Desoxiuracil/química , Corantes Fluorescentes/química , DNA/metabolismo , Nucleotídeos de Desoxiuracil/síntese química , Nucleotídeos de Desoxiuracil/metabolismo , Maleimidas/química , Peptídeos/química , Reação em Cadeia da Polimerase
16.
Chem Biodivers ; 1(10): 1418-51, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17191788

RESUMO

The potentially prebiotic synthesis of ribo-nucleotides by stepwise pyrimidine nucleobase assembly on arabinose-3-phosphate derivatives has been demonstrated in previous work. Consideration of the provenance of pentose phosphates, by aldolisation or sugar phosphorylation, suggested that 2-phosphate derivatives might be generated more easily than 3-phosphate derivatives. In the 2-phosphate series, nucleobase-assembly chemistry to give ribo-nucleotides/nucleic acid can be envisaged from xylo-configured starting materials. In this paper, the derivation of xylose-2-phosphate derivatives by aldol chemistry and attempts to demonstrate subsequent pyrimidine nucleobase assembly are reported.


Assuntos
Peptídeos/química , Fosfatos/química , RNA/química , Xilose/química , Pentosefosfatos/química
17.
Chem Biodivers ; 1(2): 203-46, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17191842

RESUMO

An introduction to the premise that RNA and genetically coded proteins should not be viewed as etiologically discrete entities in the origin of life is presented. This premise follows from the mutual interdependence of RNA and coded proteins in biology and the lack of prebiotically plausible constitutional self-assembly processes leading to either polymeric species. The RNA:coded peptides subsystem and its informational core, the genetic code, are then analysed retrosynthetically to suggest a (replicative) synthesis involving the intermediacy of aminoacyl-RNA trimers (cf. Scheme 5). A number of potential candidate aminoacyl-RNA trimers are identified (23-26; Scheme 6) and a chemical strategy to assess their validity is outlined. Experimental investigation of potential aminoacylation chemistry, nucleobase assembly and phosphate activation rules out three of the trimers but suggests that 26 is worthy of further investigation.


Assuntos
Evolução Molecular , Código Genético/genética , Peptídeos/genética , RNA/genética , Peptídeos/química , RNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA