Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Eur J Appl Physiol ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819659

RESUMO

PURPOSE: The involvement of central command in central hemodynamic regulation during exercise is relatively well-known, although its contribution to peripheral hemodynamics at the onset of low-intensity contractions is debated. This study sought to examine central and peripheral hemodynamics during electrically-evoked muscle contractions (without central command) and voluntary muscle activity (with central command). METHODS: Cyclic quadriceps isometric contractions (1 every second), either electrically-evoked (ES; 200 ms trains composed of 20 square waves) or performed voluntarily (VC), were executed by 10 healthy males (26 ± 3 years). In both trials, matched for force output, peripheral and central hemodynamics were analysed. RESULTS: At exercise onset, both ES and VC exhibited equal peaks of femoral blood flow (1276 ± 849 vs. 1117 ± 632 ml/min, p > 0.05) and vascular conductance (15 ± 11 vs. 13 ± 7 ml/min/mmHg, p > 0.05), respectively. Similar peaks of heart rate (86 ± 16 bpm vs. 85 ± 16 bpm), stroke volume (100 ± 20 vs. 99 ± 27 ml), cardiac output (8.2 ± 2.5 vs. 8.5 ± 2.1 L/min), and mean arterial pressure (113 ± 13 vs. 113 ± 3 mmHg), were recorded (all, p > 0.05). After ~ 50 s, all the variables drifted to lower values. Collectively, the hemodynamics showed equal responses. CONCLUSION: These results suggest a similar pathway for the initial (first 40 s) increase in central and peripheral hemodynamics. The parallel responses may suggest an initial minimal central command involvement during the onset of low-intensity contractions, likely associated with a neural drive activation delay or threshold.

2.
Int J Sports Physiol Perform ; 19(2): 155-163, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086366

RESUMO

Ski mountaineering sprint competitions are short individual races involving 3 uphill sections (U), 3 transitions (T), and a final descent. To date, relatively little is known about this novel Olympic discipline, and here we examined (1) the contribution of the time spent on U, T, and final descent to overall finishing time and (2) the potential relationships with final ranking. During the different rounds of 2 International Ski Mountaineering Federation World Cup sprint competitions, male and female ski mountaineers were video recorded. Correlation and multiple linear regression analyses were used to investigate the impact of U, T, and final descent on the best overall finishing time. Linear-mixed model analysis was applied to explore potential interactions between section times, rounds, and final ranking. Overall, U (r = .90-.97) and T (r = .57-.89) were closely correlated with the best overall finishing time (all P < .05). U explained approximately 80% to 90% of the variation in the best finishing time for both sexes, with U + T explaining approximately 95% to 98% of this variation. In each successive round, the ski mountaineers eliminated were all slower on U than the Top 3 (all P < .05). The fastest skiers increased their performance on U in the later rounds of the competitions, while those eliminated showed a tendency toward a decrease. Our findings reveal that world-class sprint ski mountaineers conduct transitions optimally and perform effectively uphill. Training for such competitions should aim to improve short supramaximal uphill performance (∼1.5-2.5 min), ensuring that this does not decline with multiple efforts. These insights into ski mountaineering sprint performance are of considerable value in connection with training for the 2026 Winter Olympics.


Assuntos
Montanhismo , Esqui , Humanos , Masculino , Feminino , Estações do Ano
3.
Eur J Appl Physiol ; 124(5): 1461-1474, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38112794

RESUMO

PURPOSE: To evaluate non-specific and ski-specific performance development in male (M) and female (F) peri-pubertal cross-country skiers and to evaluate their relationship with cross-country skiing (XCS) performance and biological maturation within each age category and sex. METHODS: Twenty-one and 19 athletes under 14 and 16 years old, respectively (U14 and U16), were tested for biological maturation; non-specific speed, agility, strength, endurance, and balance; ski-specific speed, agility, and endurance. XCS index was considered as average percentage time-gap from the winner in four official races. Sex and age-category effects were verified and a model predicting XCS index was extrapolated for each group. RESULTS: Performance capacities raised across age categories (p < 0.05) except for non-specific speed, agility, balance, and relative arm strength (p > 0.05). F showed advanced biological maturation and greater balance than M (p < 0.05), while M showed higher performance capacities (p < 0.05). XCS index was not related to biological maturation within each group (p > 0.05); its variance was explained by non-specific speed and ski-specific upper-body endurance in M-U14 (p = 0.014), lower-limb strength and ski-specific agility in M-U16 and F-U14 (both p = 0.001), ski-specific upper-body endurance in F-U16 (p = 0.002). CONCLUSION: Ski-specific performance capacities still develop during peri-puberty, with peri-pubertal M overperforming with respect to F of comparable performance level. XCS index was not influenced by biological maturation withing each age category, but it was rather explained by specific parameters that commonly undergo the "adolescent spurts", accordingly to the average biological maturation level of M and F athletes of each age category.


Assuntos
Desempenho Atlético , Esqui , Humanos , Esqui/fisiologia , Masculino , Adolescente , Feminino , Desempenho Atlético/fisiologia , Resistência Física/fisiologia , Força Muscular/fisiologia
4.
Eur J Appl Physiol ; 123(12): 2803-2812, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37392255

RESUMO

PURPOSE: In sky- and trail-running competitions, many athletes use poles. The aims of this study were to investigate whether the use of poles affects the force exerted on the ground at the feet (Ffoot), cardiorespiratory variables and maximal performance during uphill walking. METHODS: Fifteen male trail runners completed four testing sessions on different days. On the first two days, they performed two incremental uphill treadmill walking tests to exhaustion with (PWincr) and without poles (Wincr). On the following days, they performed submaximal and maximal tests with (PW80 and PWmax) and without (W80 and Wmax) poles on an outdoor trail course. We measured cardiorespiratory parameters, the rating of perceived exertion, the axial poling force and Ffoot. RESULTS: When walking on the treadmill, we found that poles reduced maximum Ffoot (- 2.8 ± 6.4%, p = 0.03) and average Ffoot (- 2.4 ± 3.3%, p = 0.0089). However, when outdoors, we found pole effect only for average Ffoot (p = 0.0051), which was lower when walking with poles (- 2.6 ± 3.9%, p = 0.0306 during submaximal trial and - 5.21 ± 5.51%, p = 0.0096 during maximal trial). We found no effects of poles on cardiorespiratory parameters across all tested conditions. Performance was faster in PWmax than in Wmax (+ 2.5 ± 3.4%, p = 0.025). CONCLUSION: The use of poles reduces the foot force both on the treadmill and outdoors at submaximal and maximal intensities. It is, therefore, reasonable to conclude that the use of poles "saves the legs" during uphill without affecting the metabolic cost.


Assuntos
Perna (Membro) , Caminhada Nórdica , Humanos , Masculino , Fenômenos Biomecânicos , Caminhada , , Teste de Esforço , Consumo de Oxigênio
5.
J Sports Med Phys Fitness ; 63(10): 1093-1099, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37382412

RESUMO

BACKGROUND: Speed skating is a discipline that involves cyclical and repetitive movements that make athletes susceptible to injuries, especially in the groin. In professional athletes, during a season, it was found that about 20% had overuse injuries with significant consequences during the competitive season due to long recovery times. Currently, new technological tools allow the measurement of multiple parameters and, through a panel of data deriving from various measurements, provide a valuable aid for training and rehabilitative purposes. This study aimed to probe the potential of the new analysis algorithm, or its ability to detect differences in electromyographic and acceleration patterns between newcomers to the discipline and professional athletes. METHODS: We proceeded through measurements using a system based on an inertial sensor and four probes for surface electromyography. RESULTS: The analysis highlights important differences both from the point of view of accelerations (with marked oscillations on the three axes of the neophyte concerning greater stability of the professional's trunk) and a different pattern of muscle activation during joint movement a greater coactivation of the neophyte compared to the professional, which could lead to a greater risk of injury due to less training. CONCLUSIONS: This new protocol, when validated on a statistically significant sample of elite athletes leading to specific benchmarks, can be used to improve athletes' performances and maybe to prevent athletes' injuries.


Assuntos
Traumatismos em Atletas , Transtornos Traumáticos Cumulativos , Humanos , Traumatismos em Atletas/prevenção & controle , Traumatismos em Atletas/diagnóstico , Eletromiografia , Atletas
6.
J Sports Med Phys Fitness ; 63(6): 707-712, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36790327

RESUMO

BACKGROUND: The sprint is one of the two ski-mountaineering disciplines that will be held at the coming Milano Cortina 2026 Winter Olympics (Italy). To date little information exists on this novel Olympic discipline. METHODS: We characterized retrospectively the participation and performance in international male and female ski mountaineering sprint races from November 2012 to April 2022. Potential associations between sex and season with participation, as well as between sex, period, round and final ranking with parameters of performance were examined with linear-mixed models. RESULTS: The minimal performance time required for success (i.e., being eligible for the next round/winning a medal) decreased progressively from the qualifications (Qs) to the final (F). Finalists adopted a conservative strategy in the Qs, improving their performance in the quarter-finals (QFs) and semifinals (SFs). The best and second-best male skier and the best female skier improved their performances even further in the F, which appears to be a key feature for success. For women, the number of participants and level of competition increased over the decade, whereas male participation did not. During the last two seasons, male sprint winners performed relatively more slowly in the preliminary rounds leaving more room for improvement in the F, which could reflect increased specialization in this discipline. CONCLUSIONS: Our findings provide novel insights into ski-mountaineering sprint races that can guide competition strategies and could be of considerable importance in connection with the Milano Cortina 2026 Winter Olympics (Italy).


Assuntos
Montanhismo , Esportes , Humanos , Masculino , Feminino , Estudos Retrospectivos , Estações do Ano , Itália
7.
Sensors (Basel) ; 23(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679634

RESUMO

Skiing is a popular winter activity spanning various subdisciplines. Key hardware are ski boots, bindings, and skis, which are designed to withstand loads generated during skiing. Obtaining service forces and moments has always been challenging to researchers in the past. The goal of the present study is to develop and test a lightweight and compact measurement system to obtain the Ground Reaction Forces and the kinematics for ski touring and alpine ski. To do so, we adapted two six-axis load cells to fit into ski touring and alpine skis adding 20 mm height and 500 g weight to the original ski. To measure kinematics, we created custom angular sensors from rotary potentiometers. The system was tested indoors using a force platform and motion capture system before a first set of field tests in which the sensors were used to measure ski touring and alpine skis kinetics and kinematics. Validation trials showed maximum errors of 10% for kinetics and 5% for kinematics. Field tests showed data in agreement with previous findings on the topic. The results of this study show the possibility of using our system to study biomechanics and equipment performances for ski touring, alpine skiing, and possibly other disciplines.


Assuntos
Esqui , Fenômenos Biomecânicos , Fenômenos Biofísicos , Cinética , Estações do Ano
8.
J Biomech ; 134: 111001, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35193062

RESUMO

Although it has already been demonstrated that Nordic walking has some peculiar biomechanical features with respect to walking, the effects on balance and trunk coordination are still unknown. Our aim here was to compare margins of stability, hip stabilizer muscle activation and scapular-pelvis coordination (mean and variability of continuous relative phase) between walking and two different pole walking techniques (observational design). Eleven Nordic walking instructors were asked to walk at 5.5 km·h-1 on a flat treadmill while 1) walking, 2) Nordic walking and 3) pole walking with just elbow flexion-extension motion allowed and constrained shoulder motion (elbow technique). The 3D movements of limbs and poles were measured by an optoelectronic motion capture system, and gluteus medius activation was measured through surface electromyography. Both techniques using poles show larger mediolateral margins of stability and similar anterior-posterior margins of stability in comparison with walking (p < 0.001). The larger mediolateral margin of stability using poles (conditions 2 and 3) is accompanied by greater trunk coordination stability (greater continuous relative phase variability) than walking. Although the Nordic walking (condition 2) technique results in a similar range of scapular and pelvis transverse rotation, the general pattern of scapular-pelvis coordination was temporally delayed by approximately 20% of the gait cycle in relation to other conditions (1 and 3). In conclusion, Nordic walking provides enhanced mediolateral support and coordination stability of trunk compared with walking, suggesting that it could be proposed as a safer exercise modality than walking.


Assuntos
Marcha , Caminhada Nórdica , Fenômenos Biomecânicos/fisiologia , Marcha/fisiologia , Tronco/fisiologia , Caminhada/fisiologia
9.
J Sport Health Sci ; 11(1): 30-39, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32439501

RESUMO

PURPOSE: This study aimed to compare biomechanical aspects of a novel "running" diagonal stride (DSRUN) with "conventional" diagonal stride (DSCONV) skiing techniques performed at high speed. METHODS: Ten elite Italian male junior cross-country skiers skied on a treadmill at 10 km/h and at a 10° incline utilizing both variants of the diagonal stride technique. The 3-dimensional kinematics of the body, poles, and roller skis; the force exerted through the poles and foot plantar surfaces; and the angular motion of the leg joints were determined. RESULTS: Compared to DSCONV, DSRUN demonstrated shorter cycle times (1.05 ± 0.05 s vs. 0.75 ± 0.03 s (mean ± SD), p < 0.001) due to a shorter rolling phase (0.40 ± 0.04 s vs. 0.09 ± 0.04 s, p < 0.001); greater force applied perpendicularly to the roller skis when they had stopped rolling forward (413 ± 190 N vs. 890 ± 170 N, p < 0.001), with peak force being attained earlier; prolonged knee extension, with a greater range of motion during the roller ski-stop phase (28° ± 4° vs. 16° ± 3°, p = 0.00014); and more pronounced hip and knee flexion during most of the forward leg swing. The mechanical work performed against friction during rolling was significantly less with DSRUN than with DSCONV (0.04 ± 0.01 J/m/kg vs. 0.10 ± 0.02 J/m/kg, p < 0.001). CONCLUSION: Our findings demonstrate that DSRUN is characterize by more rapid propulsion, earlier leg extension, and a greater range of motion of knee joint extension than DSCONV. Further investigations, preferably on snow, should reveal whether DSRUN results in higher acceleration and/or higher peak speed.


Assuntos
Corrida , Esqui , Fenômenos Biomecânicos , Teste de Esforço , Humanos , Articulação do Joelho , Masculino
10.
J Sports Med Phys Fitness ; 62(10): 1329-1337, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34913625

RESUMO

BACKGROUND: The COVID-19 pandemic requires the adoption of strict preventive measures, such as wearing a protective face mask, but few studies investigated its impact during exercise. We investigated the effects of wearing a protective face mask while exercising at different intensities and verified whether differences between two types of protective face masks exist. METHODS: Twenty subjects performed 4-min running at 8 km•h-1 and at 10 km•h-1, 8 x 90-m Intermittent running bouts and the Yo-Yo Intermittent Recovery Test Level-1, while wearing either a surgical mask, a sports-reusable mask or no mask. Physiological responses (HR, [La], SpO2), overall and breathlessness perceived exertion and YYIRT1-distance were assessed. RESULTS: Breathlessness RPE was greater with surgical than without mask at the end of the run at 8 km•h-1 (+7.18 [3.21, 11.50]) and with both surgical and sports-reusable mask than without mask at the end of the run at 10 km•h-1 (+8.09 [4.09, 12.60] and +8.21 [4.53, 12.70]) and intermittent exercise (+11.10 [6.41, 16.10] and +10.50 [6.18, 15.30]). Overall RPE was greater with surgical than without mask at the end of the run at 8 (+3.71 [1.15, 6.91]) and 10 km•h-1 (+5.29 [2.26, 8.85]). Furthermore, YYIRT1 performance was lower with surgical (-150 m [44, 240]) and sports-reusable mask (-201 m [108, 286]) than without mask. CONCLUSIONS: Regardless of exercise intensity and mask type, wearing a protective face mask mostly affects perceptual responses, also causing a performance reduction during maximal exercise. These findings must be considered when prescribing/practicing exercise while wearing a protective face mask.


Assuntos
COVID-19 , Dispneia , Exercício Físico , Humanos , Máscaras , Pandemias/prevenção & controle
11.
J Sports Sci ; 40(22): 2544-2551, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36725692

RESUMO

We investigated the relationship between maximal oxygen consumption (VO2max) and performance in vertical races (VRs). In total, 270 performances, from 26 VRs, and cardiopulmonary data of 64 highly-trained mountain runners (53 M, V O2max: 75.7±5.8 mL/min/kg; 11 F: 65.7±3.4 mL/min/kg), collected over a 11-year period (2012-2022), were analysed. The relationship between performance and VO2max was modelled separately for national (NVRs), international (IVRs), and VRs of current pole-unassisted and pole-assisted vertical kilometre (VK) records (RVRs). Three different (p<0.001) exponential models described the relationship between performance and VO2max in IVRs (R2=0.96, p<0.001), NRs (R2=0.91, p<0.001) and RVRs (R2=0.97, p<0.001). Estimated VO2max requirements (with 95% CI) to win/set a record time in IVRs were 86.2(85.3-87.1)/89.4(88.2-90.5) and 74.0(73.6-74.4)/76.8(76.4-77.3) mL/min/kg, for males and females, respectively, 86.1(85.0-87.1)/90.4(89.0-91.8) and 74.8(74.2-75.3)/77.1(77.6-77.7) mL/min/kg in RVRs, decreasing to 83.7(82.5-84.9)/87.6(86.0-89.2) and 66.8(65.9-67.7)/70.7(70.1-71.4) mL/min/kg in NVRs. Our study also suggested a tendency towards a non-uniform variation in the metabolic demand of off-road running, likely attributable to the different features of the VRs (e.g., terrain, technical level, use of poles). These data provide mean VO2max requirements for mountain runners to win and establish new records in VRs and stimulate new research on the energy cost of off-road running.


Assuntos
Resistência Física , Corrida , Humanos , Masculino , Feminino , Estudos Retrospectivos , Consumo de Oxigênio , Desempenho Atlético , Metabolismo Energético , Coração
12.
Front Physiol ; 12: 737249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744777

RESUMO

Ski mountaineering is a rapidly growing winter sport that involves alternately climbing and descending slopes and various racing formats that differ in length and total vertical gain, as well as their distribution of downhill and uphill sections. In recent years, both participation in and media coverage of this sport have increased dramatically, contributing, at least in part, to its inclusion in the 2026 Winter Olympics in Milano-Cortina. Here, our aim has been to briefly describe the major characteristics of ski mountaineering, its physiological and biomechanical demands, equipment, and training/testing, as well as to provide some future perspectives. Despite its popularity, research on this discipline is scarce, but some general characteristics are already emerging. Pronounced aerobic capacity is an important requirement for success, as demonstrated by positive correlations between racing time and maximal oxygen uptake and oxygen uptake at the second ventilatory threshold. Moreover, due to the considerable mechanical work against gravity on demanding uphill terrain, the combined weight of the athlete and equipment is inversely correlated with performance, prompting the development of both lighter and better equipment in recent decades. In ski mountaineering, velocity uphill is achieved primarily by more frequent (rather than longer) strides due primarily to high resistive forces. The use of wearable technologies, designed specifically for analysis in the field (including at elevated altitudes and cold temperatures) and more extensive collaboration between researchers, industrial actors, and coaches/athletes, could further improve the development of this sport.

13.
J Therm Biol ; 98: 102925, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34016347

RESUMO

PURPOSE: To investigate the effects of a very short-term acclimation protocol (VSTAP) on performance, physiological and perceptual responses to exercise in the heat. METHODS: 12 trained male cyclists (age 31.2 ± 7; weight 71.3 ± 7 kg, VO2max: 58.4 ± 3.7 mL/kg/min) randomly performed two Time to Exhaustion Tests (TTE) at 75% of normothermic peak power output (PPO), one in normothermia (N,18°C-50% RH) and one in the heat (H,35°C-50% RH), before and after a VSTAP intervention, consisting of 3 days-90 min exercise (10min at 30% of PPO+80 min at 50% of PPO) in H (≈4.5h of heat exposure). Performance time of TTEs and physiological and perceptual variables of both TTEs and training sessions (T1, T2 and T3) were evaluated. RESULTS: Magnitude Based Inferences (MBI) revealed 92/6/1% and 62/27/11% chances of positive/trivial/negative effects of VSTAP of improving performance in H (+17%) and in N (+9%), respectively. Heart Rate (HR) decreased from T1 to T3 (p < 0.001) and T2 to T3 (p < 0.001), whereas Tympanic Temperature (TyT) decreased from T1 to T2 (p = 0.047) and from T1 to T3 (p = 0.007). Furthermore, despite the increased tolerance to target Power Output (PO) throughout training sessions, RPE decreased from T1 to T3 (p = 0.032). CONCLUSIONS: The VSTAP determined meaningful physiological (i.e. decreased HR and TyT) and perceptual (i.e. decreased RPE) adaptations to submaximal exercise. Furthermore, showing good chances to improve performance in the heat, it represents a valid acclimation strategy to be implemented when no longer acclimation period is possible. Finally, no cross-over effect of the VSTAP on performance in temperate conditions was detected.


Assuntos
Aclimatação/fisiologia , Ciclismo/fisiologia , Exercício Físico/fisiologia , Temperatura Alta , Adulto , Humanos , Masculino , Resistência Física , Adulto Jovem
15.
Artigo em Inglês | MEDLINE | ID: mdl-33345100

RESUMO

Introduction: Very little is known about talent development and selection processes in young cross-country skiers. Aim: (1) to analyze the effect of age on anthropometric and physiological parameters in medium-to-high level cross-country skiers during the late teenage period; (2) to describe parameters' trend in selected talents after the late teenage period; (3) to define which characteristics during the late teenage period could discriminate against further talent selection. Method: We found 14 male (M) and nine (F) athletes in our database, identified as talents by regional teams during the late teenage period, who performed the same diagonal-stride roller-skiing incremental test to exhaustion at 17 and 18 years old. Of these, four M and three F teenagers performed four further evaluations, and were selected by the national team. Age effect during the late teenage period was verified on anthropometric and physiological parameters measured at maximal intensity (MAX), first (VT1), and second (VT2) ventilatory thresholds, and 3° and 6° of treadmill incline. An observational analysis allowed to evaluate parameters' trend after the late teenage period in selected athletes, and to determine possible characteristics early discriminating further selection. Results: During the late teenage period, height, weight, and BMI was still raising in M as well as V'O2 at VT2 and 6° of treadmill incline (all P > 0.05). In F, mass-scaled V'O2 MAX increased while heart rate (HR) at MAX and VT2 decreased (all P > 0.05). Since the late teenage period, all selected males showed maximal ventilation volumes, absolute V'O2 at MAX, VT1, and VT2 that were within or above the 75th percentile of their group; the same was found in selected females for mass-scaled V'O2 MAX, VT1, and VT2 time. After the late teenage period, all selected athletes showed an increasing trend for VT2 time, while a decreasing trend for sub-maximal energetic cost, %V'O2 and HR. Discussion: During the late teenage period, males are still completing their maturation process. Since the late teenage period, some physiological parameters seem good indicators to early discriminate for further talents. A progressive increase in skiing efficiency was demonstrated in developing talents of both sexes after the late teenage period.

16.
High Alt Med Biol ; 21(3): 249-257, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32412801

RESUMO

Fornasiero, Alessandro, Aldo Savoldelli, Federico Stella, Alexa Callovini, Lorenzo Bortolan, Andrea Zignoli, David A. Low, Laurent Mourot, Federico Schena, and Barbara Pellegrini. Shortening work-rest durations reduces physiological and perceptual load during uphill walking in simulated cold high-altitude conditions. High Alt Med Biol. 21:249-257, 2020. Background: We investigated the effects of two different work-rest durations on the physiological and perceptual responses to a simulated mountain hike in a cold hypoxic environment. Materials and Methods: Twelve healthy nonacclimatized active men (age 31.3 ± 5.3 years, body mass index 22.4 ± 1.5 kg/m2) completed a 80-minute work-matched intermittent exercise on a motorized treadmill (25% incline, fixed self-selected speed), in a simulated mountain environment (-25°C, FiO2 = 11%, ≈5000 m a.s.l.), wearing extreme cold weather gear, once with short (20 × 3 minutes walking with 1 minute rest; SHORT) and once with long (10 × 6 minutes walking with 2 minutes rest; LONG) work-rest durations. Heart rate (HR), pulse oxygen saturation (SpO2), rate of perceived exertion (RPE), and thermal sensation (TS) were assessed throughout the exercise protocols. Cardiac autonomic modulation was assessed before (PRE) and after exercise (POST) in supine position, as well as during standing resting periods by means of HR recovery (HRR) assessment. Results: SpO2 and TS were similar (p > 0.05) in SHORT and LONG protocols. HR and RPE were increased, and HRR reduced during LONG compared to SHORT (p < 0.05). Parasympathetic activity indices were reduced at POST after both protocols (p < 0.05), but to a lesser extent after SHORT (p < 0.05). Conclusions: Reduced work-rest durations are associated with improved perceptual responses and less perturbation of cardiac autonomic balance, compared to longer work-rest durations. Shorter exercise periods from more frequent breaks during hikes at high altitude may represent a valid strategy to limit the impact of exercise under extreme environmental conditions.


Assuntos
Altitude , Caminhada , Adulto , Exercício Físico , Frequência Cardíaca , Humanos , Masculino , Descanso
17.
J Appl Physiol (1985) ; 128(4): 805-812, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191594

RESUMO

Blood flow (BF) to exercising muscles is susceptible to variations of intensity, and duration of skeletal muscle contractions, cardiac cycle, blood velocity, and vessel dilation. During cyclic muscle activity, these elements may change proportionally with or without direct optimal temporal alignment, likely influencing BF to active muscle. Ideally, the pulsed delivery of blood to active muscle timed with the inactive phase of muscle duty-cycle would enhance the peak and average BF. To investigate the phenomenon of muscle contraction and pulse synchronicity, electrically evoked muscle contractions (trains of 20 Hz, 200-ms duration) were synchronized with each systolic phase of the anterograde blood velocity spectrum (aBVS). Specifically, unilateral quadriceps contractions matched in-phase (IP) with the aBVS were compared with contractions matched out-of-phase (OP) with the aBVS in 10 healthy participants (26 ± 3 yr). During each trial, femoral BF of the contracting limb and central hemodynamics were recorded for 5 min with an ultrasound Doppler, a plethysmograph, and a cardioimpedance device. At steady state (5th min) IP BF (454 ± 30 mL/min) and vascular conductance (4.3 ± 0.2 mL·min-1·mmHg-1), and OP MAP (108 ± 2 mmHg) were significantly lower (P < 0.001) in comparison to OP BF (784 ± 25 mL/min) and vascular conductance (6.7 ± 0.2 mL·min-1·mmHg-1), and IP MAP (113 ± 3 mmHg). On the contrary, no significant difference (all, P > 0.05) was observed between IP and OP central hemodynamics (HR: 79 ± 10 vs. 76 ± 11 bpm, CO: 8.0 ± 1.6 vs. 7.3 ± 1.6 L/min), and ventilatory patterns (V̇e:14 ± 2 vs. 14 ± 1 L/min, V̇o2:421 ± 70 vs. 397 ± 34 mL/min). The results suggest that muscle contractions occurring during OP that do not interfere with aBVS elicit a maximization of muscle functional hyperemia.NEW & NOTEWORTHY When muscle contraction is synchronized with the pulsed delivery of blood flow to active muscle, muscle functional hyperemia can be either maximized or minimized. This suggests a possibility to couple different strategies to enhance the acute and chronic effects of exercise on the cardiovascular system.


Assuntos
Hiperemia , Velocidade do Fluxo Sanguíneo , Frequência Cardíaca , Humanos , Contração Muscular , Músculo Esquelético , Fluxo Sanguíneo Regional
18.
J Sports Sci ; 38(8): 863-872, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32138604

RESUMO

We aimed to evaluate the changes in double poling (DP) kinematics due to a long-distance cross-country skiing race in athletes with different performance levels. A total of 100 cross-country skiers, belonging to 10 different performance groups, were filmed on flat terrain 7 and 55 km after the start line, during a 58-km classical race. Cycle velocity, frequency and length decreased from the best to the lower-ranked group, while duty cycle increased (all P <.001). Between track sections, cycle velocity and length decreased, duty cycles increased (all P <.001) while frequency was unaltered (P =.782). Group*section interactions resulted for cycle velocity (P =.005). Considering all the participants together, % change in cycle velocity between sections correlated with % change in length and duty cycle (all P <.001). Thus i) skiers in better groups showed longer and more frequent cycles as well as shorter duty cycles than skiers in slower groups; ii) throughout the race all the groups maintained the same cycle frequency while decreasing cycle velocity and length; iii) better groups showed a lower reduction in cycle velocity. Individually, a low reduction in cycle velocity during the race related to the capacity to maintain long cycles and short duty cycles.


Assuntos
Destreza Motora/fisiologia , Resistência Física/fisiologia , Esqui/fisiologia , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Fadiga Muscular/fisiologia , Estudos de Tempo e Movimento
19.
Front Physiol ; 9: 978, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30090070

RESUMO

Introduction: Although short-term (approximately 10-min) fatiguing DP has been reported not to alter the joint kinematics or displacement of the centre of mass (COM) of high-level skiers, we hypothesize that prolonged DP does change these kinematics, since muscular strength is impaired following endurance events lasting longer than 2 h. Methods: During the 58-km Marcialonga race in 2017, the fastest 15 male skiers were videofilmed (100 fps, FHD resolution in the sagittal plane) on two 20-m sections (inclines: 0.7 ± 0.1°) 48 km apart (i.e., 7 and 55 km from the start), approximating 50- km Olympic races. The cameras were positioned perpendicular to and about 40 m from the middle of each section and spatial dimensions adjusted for each individual track skied. Pole and joint kinematics, as well as displacement of the COM during two DP cycles were assessed. Results: The 10 skiers who fulfilled our inclusion criteria finished the race in 2 h 09 min 19 s ± 28 s. Displacements of the joints and COM were comparable to previous observations on skiers roller skiing on a flat treadmill at similar speeds in the laboratory. 55 km after the start, cycle velocity and length were lower (P < 0.001 and P = 0.002, respectively) and the angular range of elbow joint flexion during the initial part of the poling phase reduced, while shoulder angle was greater during the first 35% of the DP cycle (all P < 0.05). Moreover, the ankle angle was increased and forward displacement of the COM reduced during the first 80% of the cycle. Conclusion: Prolonged DP reduced the forward displacement of the COM and altered arm kinematics during the early poling phase. The inefficient utilization of COM observed after 2 h of competition together with potential impairment of the stretch-shortening of arm extensor muscles probably attenuated generation of poling force. To minimize these effects of fatigue, elite skiers should focus on maintaining optimal elbow and ankle kinematics and an effective forward lean during the propulsive phase of DP.

20.
Eur J Appl Physiol ; 118(10): 2189-2201, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30051338

RESUMO

PURPOSE: This study investigated the effects of acute hypoxic exposure on post-exercise cardiac autonomic modulation following maximal cardiopulmonary exercise testing (CPET). METHODS: Thirteen healthy men performed CPET and recovery in normoxia (N) and normobaric hypoxia (H) (FiO2 = 13.4%, ≈ 3500 m). Post-exercise cardiac autonomic modulation was assessed during recovery (300 s) through the analysis of fast-phase and slow-phase heart rate recovery (HRR) and heart rate variability (HRV) indices. RESULTS: Both short-term, T30 (mean difference (MD) 60.0 s, 95% CI 18.2-101.8, p = 0.009, ES 1.01), and long-term, HRRt (MD 21.7 s, 95% CI 4.1-39.3, p = 0.020, ES 0.64), time constants of HRR were higher in H. Fast-phase (30 and 60 s) and slow-phase (300 s) HRR indices were reduced in H either when expressed in bpm or in percentage of HRpeak (p < 0.05). Chronotropic reserve recovery was lower in H than in N at 30 s (MD - 3.77%, 95% CI - 7.06 to - 0.49, p = 0.028, ES - 0.80) and at 60 s (MD - 7.23%, 95% CI - 11.45 to - 3.01, p = 0.003, ES - 0.81), but not at 300 s (p = 0.436). Concurrently, Ln-RMSSD was reduced in H at 60 and 90 s (p < 0.01) but not at other time points during recovery (p > 0.05). CONCLUSIONS: Affected fast-phase, slow-phase HRR and HRV indices suggested delayed parasympathetic reactivation and sympathetic withdrawal after maximal exercise in hypoxia. However, a similar cardiac autonomic recovery was re-established within 5 min after exercise cessation. These findings have several implications in cardiac autonomic recovery interpretation and in HR assessment in response to high-intensity hypoxic exercise.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Exercício Físico/fisiologia , Frequência Cardíaca , Hipóxia/fisiopatologia , Adulto , Teste de Esforço , Voluntários Saudáveis , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA