Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Nat Biomed Eng ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237710

RESUMO

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) lack nanoscale structures essential for efficient excitation-contraction coupling. Such nanostructures, known as dyads, are frequently disrupted in heart failure. Here we show that the reduced expression of cardiomyopathy-associated 5 (CMYA5), a master protein that establishes dyads, contributes to dyad disorganization in heart failure and to impaired dyad assembly in hiPSC-CMs, and that a miniaturized form of CMYA5 suitable for delivery via an adeno-associated virus substantially improved dyad architecture and normalized cardiac function under pressure overload. In hiPSC-CMs, the miniaturized form of CMYA5 increased contractile forces, improved Ca2+ handling and enhanced the alignment of sarcomere Z-lines with ryanodine receptor 2, a protein that mediates the sarcoplasmic release of stored Ca2+. Our findings clarify the mechanisms responsible for impaired dyad structure in diseased cardiomyocytes, and suggest strategies for promoting dyad assembly and stability in heart disease and during the derivation of hiPSC-CMs.

2.
Circulation ; 150(15): 1199-1210, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39155863

RESUMO

BACKGROUND: Calmodulinopathies are rare inherited arrhythmia syndromes caused by dominant heterozygous variants in CALM1, CALM2, or CALM3, which each encode the identical CaM (calmodulin) protein. We hypothesized that antisense oligonucleotide (ASO)-mediated depletion of an affected calmodulin gene would ameliorate disease manifestations, whereas the other 2 calmodulin genes would preserve CaM level and function. METHODS: We tested this hypothesis using human induced pluripotent stem cell-derived cardiomyocyte and mouse models of CALM1 pathogenic variants. RESULTS: Human CALM1F142L/+ induced pluripotent stem cell-derived cardiomyocytes exhibited prolonged action potentials, modeling congenital long QT syndrome. CALM1 knockout or CALM1-depleting ASOs did not alter CaM protein level and normalized repolarization duration of CALM1F142L/+ induced pluripotent stem cell-derived cardiomyocytes. Similarly, an ASO targeting murine Calm1 depleted Calm1 transcript without affecting CaM protein level. This ASO alleviated drug-induced bidirectional ventricular tachycardia in Calm1N98S/+ mice without a deleterious effect on cardiac electrical or contractile function. CONCLUSIONS: These results provide proof of concept that ASOs targeting individual calmodulin genes are potentially effective and safe therapies for calmodulinopathies.


Assuntos
Calmodulina , Miócitos Cardíacos , Oligonucleotídeos Antissenso , Animais , Calmodulina/genética , Calmodulina/metabolismo , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/farmacologia , Humanos , Miócitos Cardíacos/metabolismo , Camundongos , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/terapia , Síndrome do QT Longo/fisiopatologia , Modelos Animais de Doenças , Potenciais de Ação/efeitos dos fármacos , Camundongos Knockout , Terapia Genética/métodos
3.
Nat Commun ; 15(1): 5929, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009604

RESUMO

Human iPSC-derived cardiomyocytes (hiPSC-CMs) have proven invaluable for cardiac disease modeling and regeneration. Challenges with quality, inter-batch consistency, cryopreservation and scale remain, reducing experimental reproducibility and clinical translation. Here, we report a robust stirred suspension cardiac differentiation protocol, and we perform extensive morphological and functional characterization of the resulting bioreactor-differentiated iPSC-CMs (bCMs). Across multiple different iPSC lines, the protocol produces 1.2E6/mL bCMs with ~94% purity. bCMs have high viability after cryo-recovery (>90%) and predominantly ventricular identity. Compared to standard monolayer-differentiated CMs, bCMs are more reproducible across batches and have more mature functional properties. The protocol also works with magnetically stirred spinner flasks, which are more economical and scalable than bioreactors. Minor protocol modifications generate cardiac organoids fully in suspension culture. These reproducible, scalable, and resource-efficient approaches to generate iPSC-CMs and organoids will expand their applications, and our benchmark data will enable comparison to cells produced by other cardiac differentiation protocols.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Organoides , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Organoides/citologia , Técnicas de Cultura de Células/métodos , Reprodutibilidade dos Testes , Células Cultivadas , Criopreservação/métodos
4.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464269

RESUMO

In the last decade human iPSC-derived cardiomyocytes (hiPSC-CMs) proved to be valuable for cardiac disease modeling and cardiac regeneration, yet challenges with scale, quality, inter-batch consistency, and cryopreservation remain, reducing experimental reproducibility and limiting clinical translation. Here, we report a robust cardiac differentiation protocol that uses Wnt modulation and a stirred suspension bioreactor to produce on average 124 million hiPSC-CMs with >90% purity using a variety of hiPSC lines (19 differentiations; 10 iPSC lines). After controlled freeze and thaw, bioreactor-derived CMs (bCMs) showed high viability (>90%), interbatch reproducibility in cellular morphology, function, drug response and ventricular identity, which was further supported by single cell transcriptomes. bCMs on microcontact printed substrates revealed a higher degree of sarcomere maturation and viability during long-term culture compared to monolayer-derived CMs (mCMs). Moreover, functional investigation of bCMs in 3D engineered heart tissues showed earlier and stronger force production during long-term culture, and robust pacing capture up to 4 Hz when compared to mCMs. bCMs derived from this differentiation protocol will expand the applications of hiPSC-CMs by providing a reproducible, scalable, and resource efficient method to generate cardiac cells with well-characterized structural and functional properties superior to standard mCMs.

5.
bioRxiv ; 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37131696

RESUMO

Understanding how the atrial and ventricular chambers of the heart maintain their distinct identity is a prerequisite for treating chamber-specific diseases. Here, we selectively inactivated the transcription factor Tbx5 in the atrial working myocardium of the neonatal mouse heart to show that it is required to maintain atrial identity. Atrial Tbx5 inactivation downregulated highly chamber specific genes such as Myl7 and Nppa , and conversely, increased the expression of ventricular identity genes including Myl2 . Using combined single nucleus transcriptome and open chromatin profiling, we assessed genomic accessibility changes underlying the altered atrial identity expression program, identifying 1846 genomic loci with greater accessibility in control atrial cardiomyocytes compared to KO aCMs. 69% of the control-enriched ATAC regions were bound by TBX5, demonstrating a role for TBX5 in maintaining atrial genomic accessibility. These regions were associated with genes that had higher expression in control aCMs compared to KO aCMs, suggesting they act as TBX5-dependent enhancers. We tested this hypothesis by analyzing enhancer chromatin looping using HiChIP and found 510 chromatin loops that were sensitive to TBX5 dosage. Of the loops enriched in control aCMs, 73.7% contained anchors in control-enriched ATAC regions. Together, these data demonstrate a genomic role for TBX5 in maintaining the atrial gene expression program by binding to atrial enhancers and preserving tissue-specific chromatin architecture of atrial enhancers.

6.
Nat Cardiovasc Res ; 2(10): 881-898, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38344303

RESUMO

Understanding how the atrial and ventricular heart chambers maintain distinct identities is a prerequisite for treating chamber-specific diseases. Here, we selectively knocked out (KO) the transcription factor Tbx5 in the atrial working myocardium to evaluate its requirement for atrial identity. Atrial Tbx5 inactivation downregulated atrial cardiomyocyte (aCM) selective gene expression. Using concurrent single nucleus transcriptome and open chromatin profiling, genomic accessibility differences were identified between control and Tbx5 KO aCMs, revealing that 69% of the control-enriched ATAC regions were bound by TBX5. Genes associated with these regions were downregulated in KO aCMs, suggesting they function as TBX5-dependent enhancers. Comparing enhancer chromatin looping using H3K27ac HiChIP identified 510 chromatin loops sensitive to TBX5 dosage, and 74.8% of control-enriched loops contained anchors in control-enriched ATAC regions. Together, these data demonstrate TBX5 maintains the atrial gene expression program by binding to and preserving the tissue-specific chromatin architecture of atrial enhancers.

8.
Front Immunol ; 13: 975918, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389712

RESUMO

Background: Although aging correlates with a worse prognosis for Covid-19, super elderly still unvaccinated individuals presenting mild or no symptoms have been reported worldwide. Most of the reported genetic variants responsible for increased disease susceptibility are associated with immune response, involving type I IFN immunity and modulation; HLA cluster genes; inflammasome activation; genes of interleukins; and chemokines receptors. On the other hand, little is known about the resistance mechanisms against SARS-CoV-2 infection. Here, we addressed polymorphisms in the MHC region associated with Covid-19 outcome in super elderly resilient patients as compared to younger patients with a severe outcome. Methods: SARS-CoV-2 infection was confirmed by RT-PCR test. Aiming to identify candidate genes associated with host resistance, we investigated 87 individuals older than 90 years who recovered from Covid-19 with mild symptoms or who remained asymptomatic following positive test for SARS-CoV-2 as compared to 55 individuals younger than 60 years who had a severe disease or died due to Covid-19, as well as to the general elderly population from the same city. Whole-exome sequencing and an in-depth analysis of the MHC region was performed. All samples were collected in early 2020 and before the local vaccination programs started. Results: We found that the resilient super elderly group displayed a higher frequency of some missense variants in the MUC22 gene (a member of the mucins' family) as one of the strongest signals in the MHC region as compared to the severe Covid-19 group and the general elderly control population. For example, the missense variant rs62399430 at MUC22 is two times more frequent among the resilient super elderly (p = 0.00002, OR = 2.24). Conclusion: Since the pro-inflammatory basal state in the elderly may enhance the susceptibility to severe Covid-19, we hypothesized that MUC22 might play an important protective role against severe Covid-19, by reducing overactive immune responses in the senior population.


Assuntos
COVID-19 , Idoso , Humanos , Brasil/epidemiologia , COVID-19/epidemiologia , COVID-19/genética , Genes MHC da Classe II , Antígenos HLA-A , SARS-CoV-2/genética
9.
J Paediatr Child Health ; 58(6): 996-1000, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35006634

RESUMO

AIM: This study aimed to evaluate the association of toll-like receptor (TLR) inflammatory cascade with the development of diabetic kidney disease (DKD) in children and adolescents with type 1 diabetes (T1D). METHODS: A total of 49 T1D patients and 49 normoglycaemic (NG) subjects aged 5-20 years old were recruited. TLR2, TLR4, MYD88, NFKB, MCP1/CCL2 and IL18 mRNA expressions were measured in peripheral blood mononuclear cells by reverse transcription-quantitative polymerase chain reaction. Fasting glucose, glycated haemoglobin, serum urea, serum creatinine and urinary albumin-to-creatinine ratio (ACR) were determined. RESULTS: The mRNA expressions of TLR2, TLR4, MYD88 and NFKB were significantly increased in the T1D group compared with the NG group. The mRNA expression levels of MCP1/CCL2 and IL18 were higher in 21 T1D patients (42.9%) (average of MCP1/CCL2: 6.6-fold and IL18: 5.8-fold) than in NG patients. Furthermore, ACR was increased in the T1D group compared with the NG group. CONCLUSION: The increased mRNA expression of TLR2, TLR4, MYD88, NFKB, MCP1/CCL2 and IL18 favours the development of an inflammatory process that may lead to a decline in renal function and consequently DKD in children and adolescents with T1D. This suggests that these genes are early mediators of onset DKD since the beginning of the lives of the paediatric T1D patients.


Assuntos
Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Adolescente , Adulto , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/complicações , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/urina , Humanos , Interleucina-18/metabolismo , Leucócitos Mononucleares/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/urina , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Adulto Jovem
10.
Front Immunol ; 12: 742881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650566

RESUMO

Despite the high number of individuals infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) who develop coronavirus disease 2019 (COVID-19) symptoms worldwide, many exposed individuals remain asymptomatic and/or uninfected and seronegative. This could be explained by a combination of environmental (exposure), immunological (previous infection), epigenetic, and genetic factors. Aiming to identify genetic factors involved in immune response in symptomatic COVID-19 as compared to asymptomatic exposed individuals, we analyzed 83 Brazilian couples where one individual was infected and symptomatic while the partner remained asymptomatic and serum-negative for at least 6 months despite sharing the same bedroom during the infection. We refer to these as "discordant couples". We performed whole-exome sequencing followed by a state-of-the-art method to call genotypes and haplotypes across the highly polymorphic major histocompatibility complex (MHC) region. The discordant partners had comparable ages and genetic ancestry, but women were overrepresented (65%) in the asymptomatic group. In the antigen-presentation pathway, we observed an association between HLA-DRB1 alleles encoding Lys at residue 71 (mostly DRB1*03:01 and DRB1*04:01) and DOB*01:02 with symptomatic infections and HLA-A alleles encoding 144Q/151R with asymptomatic seronegative women. Among the genes related to immune modulation, we detected variants in MICA and MICB associated with symptomatic infections. These variants are related to higher expression of soluble MICA and low expression of MICB. Thus, quantitative differences in these molecules that modulate natural killer (NK) activity could contribute to susceptibility to COVID-19 by downregulating NK cell cytotoxic activity in infected individuals but not in the asymptomatic partners.


Assuntos
Infecções Assintomáticas , COVID-19 , Antígenos de Histocompatibilidade , Complexo Principal de Histocompatibilidade , SARS-CoV-2 , Adulto , Idoso , Brasil , COVID-19/genética , COVID-19/imunologia , Feminino , Predisposição Genética para Doença , Genótipo , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/imunologia , Humanos , Complexo Principal de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/imunologia , Masculino , Pessoa de Meia-Idade , Sequenciamento do Exoma
11.
Epigenomics (Online) ; 13(10): 779-791, May., 2021.
Artigo em Inglês | Sec. Est. Saúde SP, CONASS, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1247328

RESUMO

AIM: functional analysis of pcsk9 3'utr variants and mrna-mirna interactions were explored in patients with familial hypercholesterolemia (fh). MATERIALS & METHODS: PCSK9 3'UTR variants were identified by exon-targeted gene sequencing. Functional effects of 3'UTR variants and mRNA-miRNA interactions were analyzed using in silico and in vitro studies in HEK293FT and HepG2 cells. RESULTS: Twelve PCSK9 3'UTR variants were detected in 88 FH patients. c.*75C >T and c.*345C >T disrupted interactions with miR-6875, miR-4721 and miR-564. Transient transfection of the c.*345C >T decreased luciferase activity in HEK293FT cells. miR-4721 and miR-564 mimics reduced PCSK9 expression in HepG2 cells. CONCLUSION: PCSK9 c.*345C >T has a possible role as loss-of-function variant. miR-4721 and miR-564 downregulate PCSK9 and may be useful to improve lipid profile in FH patients.


Assuntos
MicroRNAs , Epigenômica , Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9
12.
Epigenomics ; 13(10): 779-791, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33899508

RESUMO

Aim: Functional analysis of PCSK9 3'UTR variants and mRNA-miRNA interactions were explored in patients with familial hypercholesterolemia (FH). Materials & methods:PCSK9 3'UTR variants were identified by exon-targeted gene sequencing. Functional effects of 3'UTR variants and mRNA-miRNA interactions were analyzed using in silico and in vitro studies in HEK293FT and HepG2 cells. Results: Twelve PCSK9 3'UTR variants were detected in 88 FH patients. c.*75C >T and c.*345C >T disrupted interactions with miR-6875, miR-4721 and miR-564. Transient transfection of the c.*345C >T decreased luciferase activity in HEK293FT cells. miR-4721 and miR-564 mimics reduced PCSK9 expression in HepG2 cells. Conclusion:PCSK9 c.*345C >T has a possible role as loss-of-function variant. miR-4721 and miR-564 downregulate PCSK9 and may be useful to improve lipid profile in FH patients.


Assuntos
Hiperlipoproteinemia Tipo II/genética , MicroRNAs , Pró-Proteína Convertase 9/genética , RNA Mensageiro , Regiões 3' não Traduzidas , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Variação Genética , Células HEK293 , Células Hep G2 , Humanos , Hiperlipoproteinemia Tipo II/metabolismo , Masculino , Pessoa de Meia-Idade , Pró-Proteína Convertase 9/metabolismo , Adulto Jovem
13.
Epigenomics ; 13(6): 423-436, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33678000

RESUMO

Aim: To explore the association of circulating miRNAs with adiposity, metabolic status and inflammatory biomarkers in patients with metabolic syndrome (MetS). Methods: Serum levels of 372 miRNAs were measured in patients with (n = 6) and without MetS (n = 6) by quantitative PCR array, and dysregulated miRNAs were validated in a larger cohort (MetS, n = 89; non-MetS, n = 144). Results: In the screening study, seven miRNAs were dysregulated in patients with MetS, and miR-421 remained increased in the validation study. miR-421 was associated with a high risk of MetS and insulin resistance and hypertension and correlated with glycated hemoglobin, triacylglycerols, high-sensitivity CRP, IL-6, resistin and adiponectin (p < 0.05). Conclusion: Circulating miR-421 is a potential biomarker for insulin resistance, metabolic dysregulation and inflammatory status in patients with MetS.


Assuntos
Biomarcadores/sangue , Regulação da Expressão Gênica , Inflamação/patologia , Resistência à Insulina , Síndrome Metabólica/complicações , MicroRNAs/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína C-Reativa/análise , Feminino , Seguimentos , Humanos , Inflamação/sangue , Inflamação/etiologia , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Prognóstico , Resistina/sangue , Triglicerídeos/sangue
14.
Epigenomics (Online) ; 13(6): 423-436, Mar. 2021. ilus
Artigo em Inglês | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1354234

RESUMO

ABSTRACT: To explore the association of circulating miRNAs with adiposity, metabolic status and inflammatory biomarkers in patients with metabolic syndrome (MetS). METHODS: Serum levels of 372 miRNAs were measured in patients with (n = 6) and without MetS (n = 6) by quantitative PCR array, and dysregulated miRNAs were validated in a larger cohort (MetS, n = 89; non-MetS, n = 144). RESULTS: In the screening study, seven miRNAs were dysregulated in patients with MetS, and miR-421 remained increased in the validation study. miR-421 was associated with a high risk of MetS and insulin resistance and hypertension and correlated with glycated hemoglobin, triacylglycerols, high-sensitivity CRP, IL-6, resistin and adiponectin (p < 0.05). CONCLUSION: Circulating miR-421 is a potential biomarker for insulin resistance, metabolic dysregulation and inflammatory status in patients with MetS.


Assuntos
Síndrome Metabólica , Adiponectina , Adiposidade , Resistência à Insulina , MicroRNAs , Inflamação
15.
Int J Clin Pract ; 74(10): e13585, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32534476

RESUMO

BACKGROUND: Increasing evidence shows that chronic inflammation plays an important role in thyroid tumorigenesis. Cytokines as central mediators in inflammatory microenvironment can present both pro-tumour and anti-tumour effects and cytokine release may be influenced by soluble HLA-G (sHLA-G), an immune checkpoint molecule whose expression can also be induced by certain cytokines. AIM: To understand the role of these soluble factors in papillary thyroid cancer (PTC). METHODS: We evaluated plasma levels of sHLA-G and of 13 cytokines using ELISA and flow cytometry, respectively, in PTC patients at two time points: pre- and post-thyroidectomy; and control subjects. RESULTS: Compared with controls, IL-6 levels were increased, while IL-1ß, IFN-α and TGF-ß1 levels were decreased in pre-thyroidectomy PTC patients. IFN-α and TGF-ß1 efficiently discriminated patients from controls and were associated with extrathyroidal extension and lymph node metastasis, respectively. In addition, TNF and IL-13 were associated with male gender, lymph node metastasis and Hashimoto thyroiditis, and sHLA-G with tumour invasion. Compared with pre-thyroidectomy, IL-4, IL-10, TNF, IFN-α and TGF-ß1 levels were increased in post-thyroidectomy. CONCLUSION: There are significant changes in the cytokine profile after surgical removal of the thyroid tumour, and IFN-α e TGF-ß1 showed to be promising cytokines for discriminating PTC patients from controls. We also found that different cytokines are associated with clinicohistopathological characteristics of PTC related to poor prognosis, suggesting that cytokines seem to play an important role in PTC development and management.


Assuntos
Carcinoma Papilar/metabolismo , Citocinas/sangue , Antígenos HLA-G/sangue , Câncer Papilífero da Tireoide/metabolismo , Adulto , Biomarcadores/metabolismo , Carcinoma Papilar/patologia , Carcinoma Papilar/cirurgia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/cirurgia , Tireoidectomia
16.
Nutrients ; 11(3)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818882

RESUMO

: The increasing prevalence of obesity and, consequently, chronic inflammation and its complications has increased the search for new treatment methods. The effect of the purified tamarind seed trypsin inhibitor (TTIp) on metabolic alterations in Wistar rats with obesity and dyslipidemia was evaluated. Three groups of animals with obesity and dyslipidemia were formed, consuming a high glycemic index and glycemic load (HGLI) diet, for 10 days: Obese/HGLI diet; Obese/standard diet; Obese/HGLI diet + TTIp (730 µg/kg); and one eutrophic group of animals was fed a standard diet. Rats were evaluated daily for food intake and weight gain. On the 11th day, animals were anesthetized and sacrificed for blood and visceral adipose tissue collection. TTIp treated animals presented significantly lower food intake than the untreated group (p = 0.0065), TG (76.20 ± 18.73 mg/dL) and VLDL-C (15.24 ± 3.75 mg/dL). Plasma concentrations and TNF-α mRNA expression in visceral adipose tissue also decreased in obese animals treated with TTIp (p < 0.05 and p = 0.025, respectively) with a negative immunostaining. We conclude that TTIp presented anti-TNF-α activity and an improved lipid profile of Wistar rats with dyslipidemia and obesity induced by a high glycemic index and load diet regardless of PPAR-γ induction.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Dislipidemias/tratamento farmacológico , Obesidade/complicações , PPAR gama/metabolismo , Peptídeos/farmacologia , Proteínas de Plantas/farmacologia , Tamarindus/química , Animais , Glicemia/efeitos dos fármacos , Dislipidemias/etiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Lipídeos/sangue , Masculino , Peptídeos/química , Proteínas de Plantas/química , Distribuição Aleatória , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/sangue
17.
Obes Facts ; 11(6): 440-453, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30537704

RESUMO

OBJECTIVE: This study evaluated the effect of a protein, the isolated Trypsin Inhibitor (TTI) from Tamarindus indica L. seed, as a CCK secretagogue and its action upon food intake and leptin in obese Wistar rats. METHODS: Three groups of obese rats were fed 10 days one of the following diets: Standard diet (Labina®) + water; High Glycemic Index and Load (HGLI) diet + water or HGLI diet + TTI. Lean animals were fed the standard diet for the 10 days. Food intake, zoometric measurements, plasma CCK, plasma leptin, relative mRNA expression of intestinal CCK-related genes, and expression of the ob gene in subcutaneous adipose tissue were assessed. RESULTS: TTI decreased food intake but did not increase plasma CCK in obese animals. On the other hand, TTI treatment decreased CCK-1R gene expression in obese animals compared with the obese group with no treatment (p = 0.027). Obese animals treated with TTI presented lower plasma leptin than the non-treated obese animals. CONCLUSION: We suggest that TTI by decreasing plasma leptin may improve CCK action, regardless of its increase in plasma from obese rats, since food intake was lowest.


Assuntos
Depressores do Apetite/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Leptina/sangue , Obesidade , Proteínas de Vegetais Comestíveis/farmacologia , Receptores da Colecistocinina/genética , Tamarindus/química , Animais , Depressores do Apetite/isolamento & purificação , Depressores do Apetite/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Masculino , Obesidade/sangue , Obesidade/tratamento farmacológico , Obesidade/genética , Proteínas de Vegetais Comestíveis/isolamento & purificação , Ratos , Ratos Wistar , Receptores da Colecistocinina/metabolismo , Resposta de Saciedade/efeitos dos fármacos , Sementes/química
18.
Cardiovasc Pathol ; 29: 37-44, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28550760

RESUMO

BACKGROUND: The aim was to investigate whether exercise training (ExT) would ameliorate expression of key genes for myocardial morphostructure and mitigate adverse left ventricular (LV) remodeling in experimental type 1 diabetes (T1D). METHODS AND RESULTS: Male Wistar rats were divided into four groups: sedentary control (SC, n=9), trained control (TC, n=13), sedentary diabetic (SD, n=20), and trained diabetic (TD, n=17). T1D was induced by 40 mg/kg streptozotocin (single dose, i.v.). Training program consisted of 4-week treadmill running (60 min/day, 5 days/wk). Structure of the LV was evaluated using histomorphometric techniques. Gene expression changes of LV collagens I and III, metalloproteinases (MMPs) 2 and 9, and transforming growth factor-ß1 were detected by reverse transcriptase quantitative polymerase chain reaction. Compared with SC, SD rats presented LV eccentric remodeling, myocyte hypertrophy, and fibrosis, whereas TD animals showed normal LV geometry and collagen content but thinner myocytes. Expression of collagens and type I/III collagen messenger RNA (mRNA) ratio were diminished in diabetic hearts compared with SC. MMP-2 gene was down-regulated in SD, whereas TD group showed decreased MMP-9 mRNA levels and MMP-2 expression comparable to that of SC rats. CONCLUSIONS: Attenuation of MMP-2 down-regulation and reduction in MMP-9 mRNA expression may constitute an underlying mechanism by which ExT counteracts progression of adverse LV remodeling in T1D.


Assuntos
Diabetes Mellitus Tipo 1/fisiopatologia , Cardiomiopatias Diabéticas/prevenção & controle , Condicionamento Físico Animal/fisiologia , Remodelação Ventricular/fisiologia , Animais , Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas/fisiopatologia , Masculino , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Ratos , Ratos Wistar
19.
Nutr Res ; 40: 48-56, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28473060

RESUMO

Type 1 diabetes mellitus (T1DM) and estrogen deficiency are associated with several alterations in bone turnover. Zinc (Zn) is required for growth, development, and overall health. Zinc has been used in complementary therapy against bone loss in several diseases. We hypothesized that Zn supplementation represents a potential therapy against severe bone loss induced by the combined effect of estrogen deficiency and T1DM. We evaluated the protective effect of Zn against bone alterations in a chronic model of these disorders. Female Wistar rats were ramdomized into 3 groups (5 rats each): control, OVX/T1DM (ovariectomized rats with streptozotocin-induced T1DM), and OVX/T1DM+Zn (OVX/T1DM plus daily Zn supplementation). Serum biochemical, bone histomorphometric, and molecular analyses were performed. Histomorphometric parameters were similar between the control and OVX/T1DM+Zn groups, suggesting that Zn prevents bone architecture alterations. In contrast, the OVX/T1DM group showed significantly lower trabecular width and bone area as well as greater trabecular separation than the control. The OVX/T1DM and OVX/T1DM+Zn groups had significantly higher serum alkaline phosphatase activity than the control. The supplemented group had higher levels of serum-ionized calcium and phosphorus than the nonsupplemented group. The RANKL/OPG ratio was similar between the control and OVX/T1DM+Zn groups, whereas it was higher in the OVX/T1DM group. In conclusion, Zn supplementation prevents bone alteration in chronic OVX/T1DM rats, as demonstrated by the reduced RANKL/OPG ratio and preservation of bone architecture. The findings may represent a novel therapeutic approach to preventing OVX/T1DM-induced bone alterations.


Assuntos
Densidade Óssea/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Suplementos Nutricionais , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Zinco/administração & dosagem , Fosfatase Alcalina/sangue , Animais , Glicemia/metabolismo , Osso e Ossos/efeitos dos fármacos , Cálcio/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Feminino , Osteoprotegerina/genética , Ovariectomia , Fósforo/sangue , Ligante RANK/genética , Ratos , Ratos Wistar
20.
Front Biosci (Schol Ed) ; 9(2): 194-229, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28199183

RESUMO

An integrative analysis of miRNA and mRNA expression profiles in left ventricle (LV) of diabetes-induced rats was performed to elucidate the role of miRNAs and their mRNAs target in diabetic cardiomyopathy (DCM). mRNA (GSE4745) and miRNA (GSE44179) datasets were downloaded from Gene Expression Omnibus 2R (GEO2R) and differentially expressed mRNAs and miRNAs were selected. Cardiotoxicity-related mRNAs (n=7) were analyzed by Ingenuity Pathway Analyses 6 (IPA) and regulatory miRNAs (n=639) were identified using TargetScan 7.1. web dataset. The integrative analysis was performed between miRNAs differentially expressed in GSE44179 and regulatory TargetScan-detected miRNAs of mRNAs differentially expressed in GSE4745. Pla2g2a and Hk2 mRNAs were up-and-down regulated, respectively, in GSE4745 on days 3 and 42 after diabetes-induction. The Pla2g2a regulatory miRNAs, rno-miR-877, rno-miR-320 and rno-miR-214, were down-regulated, and Hk2 regulatory miRNAs, rno-miR-17, rno-miR-187, rno-miR-34a, rno-miR-322, rno-miR-188, rno-miR-532 and rno-miR-21, were up-regulated in GSE44179 dataset. These results are suggestive that Pla2g2a and Hk2 mRNAs and their regulatory miRNAs play a role in DCM pathogenesis and they may be potential circulating biomarkers to detect early cardiovascular complications in diabetic patients.


Assuntos
Cardiomiopatias/genética , Diabetes Mellitus/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Animais , Cardiomiopatias/metabolismo , Diabetes Mellitus/metabolismo , Regulação para Baixo , MicroRNAs/genética , RNA Mensageiro/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA