Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135285

RESUMO

Respiratory syncytial virus (RSV) primarily infects the respiratory epithelium, but growing evidence suggests it may also be responsible for neurological sequelae. In 3D microphysiological peripheral nerve cultures, RSV infected neurons, macrophages, and dendritic cells along two distinct trajectories depending on the initial viral load. Low-level infection was transient, primarily involved macrophages, and induced moderate chemokine release with transient neural hypersensitivity. Infection with higher viral loads was persistent, infected neuronal cells in addition to monocytes, and induced robust chemokine release followed by progressive neurotoxicity. In spinal cord cultures, RSV infected microglia and dendritic cells but not neurons, producing a moderate chemokine expression pattern. The persistence of infection was variable but could be identified in dendritic cells as long as 30 days post-inoculation. This study suggests that RSV can disrupt neuronal function directly through infection of peripheral neurons and indirectly through infection of resident monocytes, and inflammatory chemokines likely mediate both mechanisms.

2.
ACS Appl Mater Interfaces ; 15(31): 37157-37173, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494582

RESUMO

Advances within in vitro biological system complexity have enabled new possibilities for the "Organs-on-a-Chip" field. Microphysiological systems (MPS) as such incorporate sophisticated biological constructs with custom biological sensors. For microelectromechanical systems (MEMS) sensors, the dielectric layer is critical for device performance, where silicon dioxide (SiO2) represents an excellent candidate due to its biocompatibility and wide utility in MEMS devices. Yet, high temperatures traditionally preclude SiO2 from incorporation in polymer-based BioMEMS. Electron-beam deposition of SiO2 may provide a low-temperature, dielectric serving as a nanoporous MPS growth substrate. Herein, we enable improved adherence of nanoporous SiO2 to polycarbonate (PC) and 316L stainless steel (SS) via polydopamine (PDA)-mediated chemistry. The resulting stability of the combinatorial PDA-SiO2 film was interrogated, along with the nature of the intrafilm interactions. A custom polymer-metal three-dimensional (3D) microelectrode array (3D MEA) is then reported utilizing PDA-SiO2 insulation, for definition of novel dorsal root ganglion (DRG)/nociceptor and dorsal horn (DH) 3D neural constructs in excess of 6 months for the first time. Spontaneous/evoked compound action potentials (CAPs) are successfully reported. Finally, inhibitory drugs treatments showcase pharmacological responsiveness of the reported multipart biological activity. These results represent the initiation of a novel 3D MEA-integrated, 3D neural MPS for the long-term electrophysiological study.


Assuntos
Polímeros , Dióxido de Silício , Humanos , Microeletrodos , Polímeros/farmacologia , Indóis/farmacologia
3.
In Vitro Cell Dev Biol Anim ; 57(2): 191-206, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33438114

RESUMO

Microphysiological systems (MPS) designed to study the complexities of the peripheral and central nervous systems have made marked improvements over the years and have allowed researchers to assess in two and three dimensions the functional interconnectivity of neuronal tissues. The recent generation of brain organoids has further propelled the field into the nascent recapitulation of structural, functional, and effective connectivities which are found within the native human nervous system. Herein, we will review advances in culture methodologies, focused especially on those of human tissues, which seek to bridge the gap from 2D cultures to hierarchical and defined 3D MPS with the end goal of developing a robust nervous system-on-a-chip platform. These advances have far-reaching implications within basic science, pharmaceutical development, and translational medicine disciplines.


Assuntos
Imageamento Tridimensional , Dispositivos Lab-On-A-Chip , Sistema Nervoso/anatomia & histologia , Neurônios/fisiologia , Animais , Engenharia Celular , Desenvolvimento de Medicamentos , Humanos
4.
PLoS Negl Trop Dis ; 14(9): e0008654, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32976503

RESUMO

Effectively controlling vector mosquito populations while avoiding the development of resistance remains a prevalent and increasing obstacle to integrated vector management. Although, metallic nanoparticles have previously shown promise in controlling larval populations via mechanisms which are less likely to spur resistance, the impacts of such particles on life history traits and fecundity of mosquitoes are understudied. Herein, we investigate the chemically well-defined cerium oxide nanoparticles (CNPs) and silver-doped nanoceria (AgCNPs) for larvicidal potential and effects on life history traits and fecundity of Aedes (Ae.) aegypti mosquitoes. When 3rd instar larvae were exposed to nanoceria in absence of larval food, the mortality count disclosed significant activity of AgCNPs over CNPs (57.8±3.68% and 17.2±2.81% lethality, respectively) and a comparable activity to Ag+ controls (62.8±3.60% lethality). The surviving larvae showed altered life history traits (e.g., reduced egg hatch proportion and varied sex ratios), indicating activities of these nanoceria beyond just that of a larvicide. In a separate set of experiments, impacts on oocyte growth and egg generation resulting from nanoceria-laced blood meals were studied using confocal fluorescence microscopy revealing oocytes growth-arrest at 16-24h after feeding with AgCNP-blood meals in some mosquitoes, thereby significantly reducing average egg clutch. AgCNPs caused ~60% mortality in 3rd instar larvae when larval food was absent, while CNPs yielded only ~20% mortality which contrasts with a previous report on green-synthesized nanoceria and highlights the level of detail required to accurately report and interpret such studies. Additionally, AgCNPs are estimated to contain much less silver (0.22 parts per billion, ppb) than the amount of Ag+ needed to achieve comparable larvicidal activity (2.7 parts per million, ppm), potentially making these nanoceria ecofriendly. Finally, this work is the first study to demonstrate the until-now-unappreciated impacts of nanoceria on life history traits and interference with mosquito egg development.


Assuntos
Aedes/efeitos dos fármacos , Cério/farmacologia , Fertilidade/efeitos dos fármacos , Larva/efeitos dos fármacos , Características de História de Vida , Animais , Feminino , Nanopartículas Metálicas/química , Controle de Mosquitos/métodos , Tamanho da Partícula , Prata/farmacologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-31035536

RESUMO

Mosquitoes continue to be a major threat to global health, and the ability to reliably monitor, catch, and kill mosquitoes via passive traps is of great importance. Global, low-cost, and easy-to-use outdoor devices are needed to augment existing efforts in mosquito control that combat the spread of disease, such as Zika. Thus, we have developed a modular, portable, non-powered (passive), self-contained, and field-deployable device suitable for releasing volatiles with a wide range of applications such as attracting, repelling, and killing mosquitoes. This unique device relies on a novel nested wick and two-reservoir design that achieves a constant release of volatiles over several hundred hours. Devices loaded with one of either two compounds, geraniol or 1-methylpiperazine (MP), were tested in a controlled environment (32 °C and 70% relative humidity), and both compounds achieved a constant release from our devices at a rate of 2.4 mg/h and 47 mg/h, respectively. The liquid payload can be volatile attractants or repellants as well as mosquitocide-containing feeding solutions for capture and surveillance. This low-cost device can be utilized for both civilian and military mosquito control purposes, but it will be particularly important for protecting those in economically repressed environments, such as sub-Saharan Africa and Central and South America.


Assuntos
Monoterpenos Acíclicos , Repelentes de Insetos , Controle de Mosquitos/instrumentação , Mosquitos Vetores , Piperazinas , Infecção por Zika virus/prevenção & controle , Animais , Culicidae/virologia , Humanos , Zika virus/isolamento & purificação , Infecção por Zika virus/transmissão
6.
J Tissue Eng Regen Med ; 13(3): 385-395, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30636354

RESUMO

Microelectrode arrays (MEAs) have become important tools in high throughput assessment of neuronal activity. However, geometric and electrical constraints largely limit their ability to detect action potentials to the neuronal soma. Enhancing the resolution of these systems to detect axonal action potentials has proved both challenging and complex. In this study, we have bundled sensory axons from dorsal root ganglia through a capillary alginate gel (Capgel™) interfaced with an MEA and observed an enhanced ability to detect spontaneous axonal activity compared with two-dimensional cultures. Moreover, this arrangement facilitated the long-term monitoring of spontaneous activity from the same bundle of axons at a single electrode. Finally, using waveform analysis for cultures treated with the nociceptor agonist capsaicin, we were able to dissect action potentials from multiple axons on an individual electrode, suggesting that this model can reproduce the functional complexity associated with sensory fascicles in vivo. This novel three-dimensional functional model of the peripheral nerve can be used to study the functional complexities of peripheral neuropathies and nerve regeneration as well as being utilized in the development of novel therapeutics.


Assuntos
Potenciais de Ação/fisiologia , Alginatos/farmacologia , Axônios/fisiologia , Géis/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Axônios/efeitos dos fármacos , Capsaicina/farmacologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Microeletrodos , Ratos
7.
RSC Adv ; 9(41): 23752-23763, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35530619

RESUMO

The real-time, colorimetric detection of analytes via aptamer-gold nanoparticle technology has proven to be an important, emerging technique within the medical field. Of global health importance, the ability to detect vector mosquito species, such as the Aedes (Ae.) aegypti mosquito, and transmitted arboviruses, such as Zika virus, is paramount to mosquito control and surveillance efforts. Herein, we describe the detection of Ae. aegypti salivary protein for vector identification and the detection of Zika virus to assess mosquito infection status by aptamer-gold nanoparticle conjugates. Key to optimization of these diagnostics were gold nanoparticle capping agents and aptamer degree of labelling (i.e., the amount of aptamers per gold nanoparticle). In the present study, detection was achieved for as little as 10 ng Ae. aegypti salivary protein and 1.0 × 105 PFU live Zika virus. These aptamer-gold nanoparticle conjugate diagnostics could one day prove to be useful as deployable nano-based biosensors that provide easy-to-read optical read outs through a straightforward red-to-blue colour change either within a diagnostic solution or atop a card/membrane-based biosensor.

8.
J Chromatogr A ; 1573: 156-160, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30224281

RESUMO

A rapid thermal desorption-gas chromatography-electron ionization-mass spectrometry (TD-GC-EI-MS) method for airborne transfluthrin detection is studied. Active air sampling of 9 L over 1 h at 23 °C through a Tenax®-loaded tube resulted in efficient capture of airborne transfluthrin. Subsequent thermal desorption was employed to achieve an LOD of 2.6 ppqv (parts per quadrillion by volume). A minimum primary desorption temperature of 300 °C is necessary for optimal recovery of sample from the Tenax® adsorbent. The matrix effects of indoor air lead to an error of 10.9% and 10.5% recovery of sample (10 pg and 100 pg loaded tubes, respectively). The linear range was 74-74,000 ppqv with a correlation coefficient of 0.9981. Active air sampling of a novel passive release device revealed a ∼150 pg/L airborne concentration gradient over 1 m, providing spatial characterization of the device's performance. This efficient method allows for the remote collection of samples and rapid analysis of airborne transfluthrin from industrial applications, optimization studies of commercial products as well as domestic/household monitoring.


Assuntos
Poluentes Atmosféricos/análise , Ciclopropanos/análise , Monitoramento Ambiental/métodos , Fluorbenzenos/análise , Cromatografia Gasosa-Espectrometria de Massas , Monitoramento Ambiental/instrumentação , Polímeros/química
9.
J Neurosci Methods ; 305: 46-53, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29746890

RESUMO

BACKGROUND: Peripheral neuropathies affect approximately 20 million people in the United States and often stem from other chronic conditions, such as diabetes. In vitro methodologies to facilitate the understanding and treatment of these disorders often lack the cellular and functional complexity required to accurately model peripheral neuropathies. In particular, they are often 2D and fail to faithfully reproduce the 3D in vivo microenvironment. NEW METHOD: Embryonic dorsal root ganglion (DRG) explants were inserted into laminin derivatized capillary alginate gel (Capgel™), a bioabsorbable, self-assembling biomaterial, possessing parallel microchannel architecture, and cultured to mimic normal nerve development, including Schwann cell myelination. RESULTS: Laminin derivatization of the microchannels improved nerve growth through the gel. Axon bundles containing myelinating Schwann cells migrated through the gel and were ensheathed by rudimentary perineurium up to 1 mm from the DRG explant site. COMPARISON WITH EXISTING METHODS: Other nerve models are two-dimensional in nature and/or fail to conserve the complicated architecture and cellular milieu observed in vivo. Our nerve model shows the simple culture technique of cells grown in 3D, which allows for a more advanced structural organization that more accurately mimics the in vivo nerve fascicle. CONCLUSIONS: When embryonic DRG explants are cultured in this system, they show a striking resemblance to in vivo peripheral nerve fascicles, including myelinated axons and the formation of a rudimentary perineurium, suggesting that both neuronal and non-neuronal cells within the DRG explant are capable of recreating the 3D structure of a developing sensory fascicle within the microchannel architecture.


Assuntos
Alginatos , Nervos Periféricos/citologia , Nervos Periféricos/crescimento & desenvolvimento , Células Receptoras Sensoriais/citologia , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Animais , Axônios/metabolismo , Materiais Biocompatíveis , Movimento Celular , Matriz Extracelular/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/crescimento & desenvolvimento , Gânglios Espinais/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Laminina/metabolismo , Modelos Neurológicos , Regeneração Nervosa , Nervos Periféricos/metabolismo , Ratos Sprague-Dawley , Células de Schwann/citologia , Células de Schwann/metabolismo , Células Receptoras Sensoriais/metabolismo , Técnicas de Cultura de Tecidos/instrumentação , Técnicas de Cultura de Tecidos/métodos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA