Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39144160

RESUMO

In this study, bio-based carbon nanospheres (CNSs) were synthesized from lignocellulosic-rich groundnut skin (Arachis hypogaea) and tested for their practical application in nanofluids (NFs) for enhanced heat transfer. The CNSs were characterized using various techniques, including FESEM, EDS, XRD, Raman spectroscopy, zeta potential analysis, and FTIR. Thermal conductivity (TC) and viscosity measurements were conducted using transient plane source (TPS) technique with a Hot Disk thermal analyser and discovery hybrid rheometer, respectively. The nanoparticles (NPs) were dispersed in two base fluids: ethylene glycol (EG) and a 60 : 40 mixture of deionized water (DI) and EG. Optimization studies were performed by varying the stirring and measurement times to improve TC values. The results showed that when a power source of 40 mW was applied at a high concentration of nanoparticles (i.e., 0.1 wt%), there was a 91.9% increment in thermal conductivity (TC) compared to the base fluid EG. DI-EG-based nanofluids (NFs) exhibited enhancements of up to 45% compared to the base fluid DI-EG (60 : 40), with a heating power of 80 mW and concentration of 0.1 wt%. These results demonstrated significant TC improvements with NP incorporation. Further experiments were performed by varying the temperature in the range of 30-80 °C with readings taken for every 10 °C increase, which showed a direct relation with the TC values. At 80 °C, EG-based NFs showed increments of 77%, 111.49%, 139.67% and 175% at 0.01, 0.02, 0.05 and 0.1 wt% concentrations of NPs, respectively. It was also found that with the increase in the concentration of NPs, viscosity increased, whereas an increase in the temperature led to a decrease in viscosity. The CNS nanofluid exhibited a Newtonian behaviour with the nanoparticle concentration and temperature, resulting in an approximately 114% enhancement compared to the base fluid when the concentration of CNSs was 0.1 wt% at 30 °C but decreased by up to 18% when the temperature was increased to 90 °C. Using appropriate mathematical models for assessing thermophysical quantities, it was discovered that the model values and experimental values correspond reasonably well. Our method thus validates our experimental results and deepens the understanding of the mechanisms behind enhancing thermal conductivity in biomass-derived nanofluids. In summary, our work advances sustainable nanomaterial synthesis, providing a new solution for boosting thermal conductivity while maintaining environmental integrity, thereby inspiring further research and innovation in this field.

2.
Nanoscale ; 16(32): 15343-15357, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39087876

RESUMO

The exploration of 'electrostatic self-assembly' on solid surfaces has garnered significant interest across various fields. With the sophistication of gadgets, managing electromagnetic interference (EMI) from stray signals, especially in stealth applications, necessitates materials that can absorb microwaves. A promising approach involves integrating lightweight self-healing polymeric materials. This study employs electrostatic self-assembly to design a carbon nanotube structure on an interpenetrating polymer network (IPN) made of PVDF and bismaleimide (BMI)-grafted dopamine hydrochloride, enhancing mechanical integrity through well-formed IPNs. Graphene oxide (GO) is introduced before IPN formation to facilitate an 'acceptor-donor' interaction via the Diels-Alder adduct between BMI and GO, which binds with multi-walled carbon nanotubes (MWCNTs). MWCNTs, modified with PQ7 or PDDA for a positive charge, self-assemble onto the IPN-GO construct, creating a lightweight and chemically stable structure capable of absorbing electromagnetic radiation. The 21 µm thick construct exhibits enhanced microwave absorption within the X-band (8.2-12.4 GHz), with a specific shielding effectiveness of 8637 dB cm2 g-1 and a green index (gs ≈ 1.41). The construct is coated with self-healable polyetherimide (PEI) containing exchangeable disulfide bonds to address maintenance challenges, providing heat-triggered self-healing properties. These innovative structures offer solutions for 5G and IoT applications where lightweight, durable, and multifunctional properties are essential for effectively shielding electronic devices from stray signals.

3.
ACS Appl Mater Interfaces ; 16(25): 31877-31894, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38868858

RESUMO

Interfacial failure in carbon fiber-reinforced epoxy (CFRE) laminates is a prominent mode of failure, attracting significant research attention. The large surface-energy mismatch between carbon fiber (CF) and epoxy results in a weaker interface. This study presents a facile yet effective method for enhancing the interfacial adhesion between CF and epoxy with self-healable interfaces. Two variants of a designer sizing agent, poly(ether imide) (PEI), were synthesized, one without a self-healing property termed BO, and the second one by incorporating disulfide metathesis in one of its monomers that renders self-healing properties at the interface-mediated by network reconfiguration, termed BA. 0.25 wt % of CF was found to be the optimum amount of BO and BA sizing agents. The surface free energy of CF drastically increased and became quite close to the surface energy of epoxy after the deposition of both sizing agents and the higher surface roughness. The improved surface wettability, presence of functional groups, and mechanical interlocking worked in tandem to strengthen the interface. The interlaminar shear strength (ILSS) and flexural strength (FS) of CFRE laminate sized with BO consequently increased by 35% and 22% and of CFRE laminate sized with BA increased by 26% and 19%, respectively. Fractography analysis revealed outstanding bonding between epoxy and PEI-CF, indicating that matrix fracture is the predominant mode of failure. The self-healable interfaces due to the preinstalled disulfide metathesis in the sizing agent resulted in 51% self-healing efficiency in ILSS for BA-sized CFRE laminate. Interestingly, the functional properties, deicing, and EMI shielding effectiveness were not compromised by modification of the interface with this designer sizing agent. This study opens new avenues for interfacial modification to improve the mechanical properties while retaining the key functional properties of the laminates.

4.
Nanoscale ; 16(14): 6984-6998, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38445355

RESUMO

Carbon fiber-reinforced epoxy (CFRE) laminates have attracted significant attention as a structural material specifically in the aerospace industry. In recent times, various strategies have been developed to modify the carbon fiber (CF) surface as the interface between the epoxy matrix and CFs plays a pivotal role in determining the overall performance of CFRE laminates. In the present work, graphene oxide (GO) was used to tag a polyetherimide (PEI, termed BA) containing exchangeable bonds and was employed as a sizing agent to improve the interfacial adhesion between CFs and epoxy. This unique GO-tagged-BA sizing agent termed BAGO significantly enhanced the mechanical properties of CFRE laminates by promoting stronger interactions between CFs and the epoxy matrix. The successful synthesis of BAGO was verified by Fourier-transform infrared spectroscopy. Additionally, the partial reduction of GO owing to this tagging with BA was further confirmed by X-ray diffraction and Raman spectroscopy, and the thermal stability of this unique sizing agent was evaluated using thermogravimetric analysis. The amount of GO in BAGO was optimized as 0.25 wt% of BA termed 0.25-BAGO. The 0.25-BAGO sizing agent resulted in a significant increase in surface roughness, from 15 nm to 140 nm, and surface energy, from 13.2 to 34.7 mN m-1 of CF. The laminates prepared from 0.25-BAGO exhibited a remarkable 40% increase in flexural strength (FS) and a 35% increase in interlaminar shear strength (ILSS) due to interfacial strengthening between epoxy and CFs. In addition, these laminates exhibited a self-healing efficiency of 51% in ILSS due to the presence of dynamic disulfide bonds in BAGO. Interestingly, the laminates with 0.25-BAGO exhibited enhanced Joule heating and enhanced deicing, though the EMI shielding efficiency slightly declined.

5.
Nanoscale ; 16(10): 5188-5205, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38376225

RESUMO

Microplastic (MP) pollution pervades global ecosystems, originating from improper plastic disposal and fragmentation due to factors like hydrolysis and biodegradation. These minute particles, less than 5 mm in size, have become omnipresent, impacting terrestrial, freshwater, and marine environments worldwide. Their ubiquity poses severe threats to marine life by causing physical harm and potentially transferring toxins through the food chain. Addressing this environmental crisis necessitates a sustainable strategy. Our proposed solution involves a highly efficient copper substitute polyoxometalate (Cu-POM) nanocluster infused triple interpenetrating polymer network (IPN) hydrogel, comprising chitosan (CS), polyvinyl alcohol (PVA), and polyaniline (PANI) (referred to as pGel@IPN) for mitigating MP contamination from water. This 3D IPN architecture, incorporating nanoclusters, also enhances the hydrogel's photodegradation capabilities. Our scalable approach offers a sustainable strategy to combat MPs in water bodies, as demostrated by the adsorption behaviors on the hydrogel matrix under varying conditions, simulating real-world scenarios. Evaluations of physicochemical properties, mechanical strength, and thermal behavior underscore the hydrogel's robustness and stability. Detecting minute MP particles remains challenging, prompting us to label MPs with Nile red for fluorescence microscopic analysis of their concentration and adsorption on the hydrogel. The catalytic properties of POM within the hydrogel facilitate UV-induced MP degradation, highlighting a sustainable solution. Our detailed kinetics and isotherm studies revealed pseudo-first-order and Langmuir models as fitting descriptors for MP adsorption, exhibiting a high maximum adsorption capacity (Qm). Notably, pGel@IPN achieved ∼95% and ∼93% removal efficiencies for polyvinyl chloride (PVC) and polypropylene (PP) MPs at pH ∼ 6.5, respectively, also demonstrating reusability for up to 5 cycles. Post-end-of-life, the spent adsorbent was efficiently upcycled into carbon nanomaterials, effectively removing the heavy metal Cr(VI), exemplifying circular economy principles. Our prepared hydrogel emerges as a potent solution for MP removal from water, promising effective mitigation of the emerging pollutants of MPs while ensuring sustainable environmental practices.

6.
Nanoscale ; 16(7): 3243-3268, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38265094

RESUMO

A key role in lessening humanity's continuous fight against cancer could be played by photodynamic therapy (PDT), a minimally invasive treatment employed in the medical care of a range of benign disorders and malignancies. Cancerous tissue can be effectively removed by using a light source-excited photosensitizer. Singlet oxygen and reactive oxygen species are produced via the photosensitizer as a result of this excitation. In the recent past, researchers have put in tremendous efforts towards developing photosensitizer molecules for photodynamic treatment (PDT) to treat cancer. Conjugated polymers, characterized by their efficient fluorescence, exceptional photostability, and strong light absorption, are currently under scrutiny for their potential applications in cancer detection and treatment through photodynamic and photothermal therapy. Researchers are exploring the versatility of these polymers, utilizing sophisticated chemical synthesis and adaptable polymer structures to create new variants with enhanced capabilities for generating singlet oxygen in photodynamic treatment (PDT). The incorporation of photosensitizers into conjugated polymer nanoparticles has proved to be beneficial, as it improves singlet oxygen formation through effective energy transfer. The evolution of nanotechnology has emerged as an alternative avenue for enhancing the performance of current photosensitizers and overcoming significant challenges in cancer PDT. Various materials, including biocompatible metals, polymers, carbon, silicon, and semiconductor-based nanomaterials, have undergone thorough investigation as potential photosensitizers for cancer PDT. This paper outlines the recent advances in singlet oxygen generation by investigators using an array of materials, including graphene quantum dots (GQDs), gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), titanium dioxide (TiO2), ytterbium (Yb) and thulium (Tm) co-doped upconversion nanoparticle cores (Yb/Tm-co-doped UCNP cores), bismuth oxychloride nanoplates and nanosheets (BiOCl nanoplates and nanosheets), and others. It also stresses the synthesis and application of systems such as amphiphilic block copolymer functionalized with folic acid (FA), polyethylene glycol (PEG), poly(ß-benzyl-L-aspartate) (PBLA10) (FA-PEG-PBLA10) functionalized with folic acid, tetra(4-hydroxyphenyl)porphyrin (THPP-(PNIPAM-b-PMAGA)4), pyrazoline-fused axial silicon phthalocyanine (HY-SiPc), phthalocyanines (HY-ZnPcp, HY-ZnPcnp, and HY-SiPc), silver nanoparticles coated with polyaniline (Ag@PANI), doxorubicin (DOX) and infrared (IR)-responsive poly(2-ethyl-2-oxazoline) (PEtOx) (DOX/PEtOx-IR NPs), particularly in NIR imaging-guided photodynamic therapy (fluorescent and photoacoustic). The study puts forward a comprehensive summary and a convincing justification for the usage of the above-mentioned materials in cancer PDT.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Ácidos Nicotínicos , Fotoquimioterapia , Succinimidas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/química , Polímeros/química , Ouro/química , Prata , Neoplasias/tratamento farmacológico , Nanopartículas/uso terapêutico , Nanopartículas/química , Doxorrubicina/uso terapêutico , Ácido Fólico
7.
Nanoscale ; 16(7): 3510-3524, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38265458

RESUMO

Herein, inspired by Acacia auriculiformis fruit, the shish-kebab-like growth of ZnO on carbon urchin (ZnO@CU) was designed using microwave radiation, thus leading to a hierarchal 3D structure that can promote multiple internal reflections through polarization centers. This hierarchal structure was then dispersed in a designer polyetherimide (PEI) matrix containing dynamic covalent bonds that can undergo metathesis, triggered by temperature, to harness self-healing properties in the composite. Such key attributes are required for their potential use in EMI shielding applications where frequent repairs are indispensable. Morphological investigation revealed that the ZnO flower was periodically nucleated like 'shish-kebab' structures on CU surfaces. CU was designed from short carbon fibers using a facile modified method. The EMI shielding performance of the resulting composites was investigated in the X-band, illustrating a shielding effectiveness of -40.6 dB for 2 wt% of ZnO@CU loading, and the composite can be preserved after the self-healing procedure. The ZnO 'kebabs' on 'CU shish' facilitated multiple scattering and numerous polarization centers to improve the EMI shielding performances at extremely low filler contents. In addition, the mechanical and thermal properties of the composite showed improved structural integrity and superior resistance to extreme temperatures, respectively. Overall, the proposed ZnO@CU/PEI composite has great potential to fulfill the increasing demands for lightweight EMI shielding materials in many fields.

8.
Artigo em Inglês | MEDLINE | ID: mdl-37932933

RESUMO

According to current projections, of the 400 mega tons of plastic produced globally, 70% is waste and of that only 16% is recycled and the rest is incinerated. This is estimated to contribute to ca. 16% of the net carbon emission by 2050. Such a massive amount of unmanaged plastic waste and the associated huge carbon footprint sets a significant challenge to tackle in the coming decades. To achieve net-zero carbon emission, closed-loop circular economy in plastics is crucial but collection, sorting and processing the postconsumer recycled (PCR) plastics poses humongous challenge in achieving this circularity, unless an effective strategy is designed. In a first of its kind, a designer biobased molecule was synthesized (here maleated castor oil, mCO) that is steric and thermally stable and forms in situ "homo-cross-linking" in the melt post grafting onto PCR-PP. This designer molecule, besides offering a transient network, helps bridge the fragmented PP chains which is usually not amenable from the traditional grafting (like maleic anhydride), thereby addressing a long-standing challenge of retaining the properties post grafting due to chain scission in the melt. The resulting maleated (m) PCR-PP now offers abundant functionality which helped us design single and dual covalent adaptable network (CANs) and evaluate their consequences on the structure-property correlation. The PCR-PP Vitrimers demonstrate a distinct rubbery plateau in the melt and reprocessability with >90% recovery in mechanical properties even after the fifth sequence of recycling. We propose here for the first time how the varying reactivity (single or dual) in the transient polymer network, through dynamic exchange, regulates the closed-loop circularity in PP Vitrimers. Our results begin to suggest that the varying reactivity should be taken into account as an additional design parameter, as it influences both the stress relaxation rates and the flow activation energy. We now understand that the topology reconfiguration is strongly dependent on this varying reactivity, which also controls the overall crystalline morphology and the structural properties in the Vitrimers. This study, in addition to opening new avenues for recycling PP, will help guide researchers working in this field from both academia and industry.

9.
ACS Omega ; 8(44): 41282-41294, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37969965

RESUMO

Advanced hierarchical carbon fiber epoxy laminates with an engineered interface using in situ-grown ZnO nanorods on carbon fiber resulted in strong mechanical interlocking with the matrix. To further strengthen the interface, "site-specific" modification was realized by modifying the ZnO nanorods with bismaleimide (BMI), which facilitates "thermo-reversible" bonds with graphene oxide (GO) present in the matrix. The resulting laminates exhibited an improvement in flexural strength by 20% and in interlaminar shear strength (ILSS) by 28%. In order to gain a mechanistic insight, few laminates were prepared by "nonselectively" modifying the ZnO-grown carbon fiber (CF) with BMI. The "nonselectively" modified laminates showed flexural strength and ILSS improvement by 43 and 39%, respectively. The "nonselective" modification resulted in a strong improvement in mechanical properties; however, the "site-specific" modification yielded a higher self-healing efficiency (81%). Raman spectroscopy, scanning electron microscopy (SEM) micrographs, atomic force microscope (AFM) analysis, and contact angle analysis indicated a strong interaction of the modified CFs with the resin. Enhanced surface area and energy, along with a decrease in segmental molecular mobility observed from dynamic mechanical analysis, confirmed the mechanism for a better performance. Microscopic images revealed an improved interfacial behavior of the fractured samples, indicating a higher interfacial adhesion in the modified laminates. Besides mechanical properties, these laminates also showed excellent electromagnetic interference (EMI) shielding performance. The laminates with only ZnO-modified CF showed a high shielding effectiveness of -47 dB.

10.
Biopolymers ; 114(12): e23568, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846654

RESUMO

Currently, conventional plastics are necessary for a variety of aspects of modern daily life, including applications in the fields of healthcare, technology, and construction. However, they could also contain potentially hazardous compounds like isocyanates, whose degradation has a negative impact on both the environment and human health. Therefore, researchers are exploring alternatives to plastic which is sustainable and environmentally friendly without compromising its mechanical and physical features. This review study highlights the production of highly eco-friendly bioplastic as an efficient alternative to non-biodegradable conventional plastic. Bioplastics are produced from various renewable biomass sources such as plant debris, fatty acids, and oils. Poly-addition of di-isocyanates and polyols is a technique employed over decades to produce polyurethanes (PUs) bioplastics from renewable biomass feedstock. The toxicity of isocyanates is a major concern with the above-mentioned approach. Novel green synthetic approaches for polyurethanes without using isocyanates have been attracting greater interest in recent years to overcome the toxicity of isocyanate-containing raw materials. The polyaddition of cyclic carbonates (CCs) and polyfunctional amines appears to be the most promising method to obtain non-isocyanate polyurethanes (NIPUs). This method results in the creation of polymeric materials with distinctive and adaptable features with the elimination of harmful compounds. Consequently, non-isocyanate polyurethanes represent a new class of green polymeric materials. In this review study, we have discussed the possibility of creating novel NIPUs from renewable feedstocks in the context of the growing demand for efficient and ecologically friendly plastic products.


Assuntos
Isocianatos , Poliuretanos , Humanos , Biopolímeros , Aminas , Biomassa
11.
ACS Omega ; 8(28): 24695-24717, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37483250

RESUMO

Membrane technology is an efficient way to purify water, but it generates non-biodegradable biohazardous waste. This waste ends up in landfills, incinerators, or microplastics, threatening the environment. To address this, research is being conducted to develop compostable alternatives that are sustainable and ecofriendly. Bioplastics, which are expected to capture 40% of the market share by 2030, represent one such alternative. This review examines the feasibility of using synthetic biodegradable materials beyond cellulose and chitosan for water treatment, considering cost, carbon footprint, and stability in mechanical, thermal, and chemical environments. Although biodegradable membranes have the potential to close the recycling loop, challenges such as brittleness and water stability limit their use in membrane applications. The review suggests approaches to tackle these issues and highlights recent advances in the field of biodegradable membranes for water purification. The end-of-life perspective of these materials is also discussed, as their recyclability and compostability are critical factors in reducing the environmental impact of membrane technology. This review underscores the need to develop sustainable alternatives to conventional membrane materials and suggests that biodegradable membranes have great potential to address this challenge.

12.
Nanoscale ; 15(28): 11935-11944, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37366152

RESUMO

Polyamide composite (PA-TFC) membranes are the state-of-the-art ubiquitous platforms to desalinate water at scale. We have developed a novel, transformative platform where the performance of such membranes is significantly and controllably improved by depositing thin films of polymethylacrylate [PMA] grafted silica nanoparticles (PGNPs) through the venerable Langmuir-Blodgett method. Our key practically important finding is that these constructs can have unprecedented selectivity values (i.e., ∼250-3000 bar-1, >99.0% salt rejection) at reduced feed water pressure (i.e., reduced cost) while maintaining acceptable water permeance A (= 2-5 L m-2 h-1 Bar-1) with as little as 5-7 PGNP layers. We also observe that the transport of solvent and solute are governed by different mechanisms, unlike gas transport, leading to independent control of A and selectivity. Since these membranes can be formulated using simple and low cost self-assembly methods, our work opens a new direction towards development of affordable, scalable water desalination methods.

13.
ACS Appl Mater Interfaces ; 15(23): 28581-28593, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37272545

RESUMO

Fiber-reinforced polymer composites as a structural material have garnered tremendous interest over the past few decades. In particular, carbon fiber-reinforced epoxy (CFRE) laminates have seen extensive use in the aircraft and aerospace industry. The role of the interface between the matrix and fiber is critical and dictates the overall structural properties of the CFRE laminate. Herein, we attempt to use a commercially viable, green, and facile approach, electrophoretic deposition (EPD), to deposit covalently coupled multiscale graphene oxide (GO)/carbon nanotube (CNT) nanoconstructs onto carbon fiber (CF) fabric. The rationale behind using these hybrid conjugates is to exploit the positive synergistic effect of combining two-dimensional (2D) GO and one-dimensional (1D) CNT nanoparticles, which provide strengthening through different mechanisms resulting in a stronger matrix/fiber interface. The modified laminate with just 0.1 wt % GO/CNT content exhibited an improvement in flexural strength (FS) by 24% and interlaminar shear strength (ILSS) by 30% compared to the neat CFRE. Scanning electron microscope (SEM) micrographs confirmed uniform and homogeneous GO and GO/CNT deposition on CF. Raman, Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analyses validate the successful functionalization of CNT and covalent coupling of GO and CNT. Atomic force microscope (AFM) and contact angle analyses indicate improved interaction between the CF and matrix. The deposition of the GO/CNT nanoconstruct on the CF improved the performance of CFREs owing to enhanced wettability, surface free energy, and surface roughness, leading to increased mechanical interlocking between the epoxy and CF at the interface. Dynamic mechanical analysis showed decreased segmental motion of epoxy chains due to improved interfacial adhesion following modification. Interesting observations were made in SEM fractography, which showed considerably different failure mechanisms in the modified CFREs. Electromagnetic interference (EMI) shielding effectiveness of -45 dB was achieved in the case of the GO/CNT-CFRE system. Electrothermal heating and de-icing performance of the modified system were also explored in this study. This versatile approach can open up new avenues for CFRE modification leading to considerably improved performance.

14.
ACS Nano ; 17(8): 7272-7284, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37036338

RESUMO

Self-assembled graphene oxide lyotropic liquid crystal (GO LLC) structures are mostly formed in aqueous medium; however, most GO derivatives are water insoluble, so processing GO LLCs in water poses a practical limitation. The use of polar aprotic solvent (like dimethyl sulfoxide) for the formation of GO LLC structures would be interesting, because it would allow incorporating additives, like photoinitiators or cross-linkers, or blending with polymers that are insoluble in water, which hence would expand its scope. The well-balanced electrostatic interaction between DMSO and GO can promote and stabilize the GO nanosheets' alignment even at lower concentrations. With this in mind, herein we report mechanically robust, chlorine-tolerant, self-assembled nanostructured GO membranes for precise molecular sieving. Small-angle X-ray scattering and polarized optical microscopy confirmed the alignment of the modified GO nanosheets in polar aprotic solvent, and the LLC structure was effectively preserved even after cross-linking under UV light. We found that the modified GO membranes exhibited considerably improved salt rejection for monovalent ions (99%) and water flux (120 LMH) as compared to the shear-aligned GO membrane, which is well supported by forward osmosis simulation studies. Additionally, our simulation studies indicated that water molecules traveled a longer path while permeating through the GO membrane compared to the GO LLC membrane. Consequently, salt ions permeate slowly across the GO LLC membrane, yielding higher salt rejection than the GO membrane. This begins to suggest strong electrostatic repulsion with the salt ions, causing higher salt rejection in the GO LLC membrane. We foresee that the ordered cross-linked GO sheets contributed to excellent mechanical stability under a high-pressure, cross-flow, chlorine environment. Overall, these membranes are easily scalable, exhibit good mechanical stability, and represent a breakthrough for the potential use of polymerized GO LLC membranes in practical water remediation applications.

15.
Heliyon ; 9(3): e13648, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36873507

RESUMO

We report electromagnetic interference (EMI) shielding efficiency in the PANI-wrapped BaFe12O19 and SrFe12O19 with rGO composites. Barium and strontium hexaferrites were synthesized using the nitrate citrate gel combustion method. These hexaferrites were polymerized in situ with aniline. The PANI-coated ferrite-based composite materials were developed along with reduced graphene oxide (rGO) in acrylonitrile butadiene styrene (ABS) polymer, and their shielding effectiveness was assessed in X-band frequency range (8.2-12.4 GHz). The reflection (SER) and absorption (SEA) mechanism of shielding effectiveness was discussed with the different rGO concentrations. The results reveal that 5 wt% of rGO with PANI-coated barium and strontium hexaferrite polymer composites exhibit shielding efficiency of 21.5 dB and 19.5 dB, respectively, for 1 mm thickness composite. These hexaferrite polymer-based composite materials can be used as an attractive candidate for EM shielding materials in various technological applications.

16.
Nanoscale ; 15(8): 3805-3822, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36723254

RESUMO

In the era of fifth-generation networks and the Internet of Things, new classes of lightweight, ultrathin, and multifunctional electromagnetic interference (EMI) shielding materials have become inevitable prerequisites for the protection of electronics from stray electromagnetic signals. In the present study, for the first time, we have designed a unique nanohybrid composed of a copper-based polyoxometalate (Cu-POM)-immobilized carbon nanotube construct, having a micron (∼100 µm)-level thickness, through a facile vacuum-assisted filtration technique. In this course of study, a total of four Cu-POMs, two from each category of Keggin and Anderson bearing opposite charges, i.e., positive and negative, have been rationally selected to investigate the effects of the host-guest electrostatic interaction between CNT and POMs in the EMI shielding performance. This approach of the host-guest electrostatic assembly between Cu-based polyanionic oxo clusters and counter-charged CNTs in the construct synergistically enhances the EMI shielding performance compared to the individual components dominated by 90% absorption in the X-band (8.2-12.4 GHz) frequency regime. Further, mutable EMI SE can be achieved by tuning the concentration of POMs and CNTs with different weight ratios. Such Cu-POM-immobilized CNT constructs demonstrating excellent shielding (∼45 dB) are not amenable via any other conventional routes, including flakes and dispersion.

17.
RSC Adv ; 13(9): 6087-6107, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36814875

RESUMO

Interpenetrating polymer network (IPN) architectures have gained a lot of interest in recent decades, mainly due to their wide range of applications including water treatment and environmental remediation. IPNs are composed of two or more crosslinked polymeric matrices that are physically entangled but not chemically connected. In polymer science, the interpenetrating network structure with its high polymer chain entanglement is commonly used to generate materials with many functional properties, such as mechanical robustness and adaptable structure. In order to remove a targeted pollutant from contaminated water, it is feasible to modify the network architectures to increase the selectivity by choosing the monomer appropriately. This review aims to give a critical overview of the recent design concepts of IPNs and their applications in desalination and water treatment and their future prospects. This article also discusses the inclusion of inorganic nanoparticles into traditional polymeric membrane networks and its advantages. In the first part, the current scenario for desalination, water pollution and conventional desalination technologies along with their challenges is discussed. Subsequently, the main strategies for the synthesis of semi-IPNs and full-IPNs, and their relevant properties in water remediation are presented based on the nature of the networks and mechanism, with an emphasis on the IPN membrane. This review article has thoroughly investigated and critically assessed published works that describe the latest study on developing IPN membranes, hydrogels and composite materials in water purification and desalination. The goal of this critical analysis is to elicit fresh perspectives regarding the application and advantages of IPNs in desalination and water treatment. This article will also provide a glimpse into future areas of research to address the challenges relating to advanced water treatment as well as its emerging sustainable approaches. The study has put forward a convincing justification and establishes the relevance of IPNs being one of the most intriguing and important areas for achieving a sustainable generation of advanced materials that could benefit mankind.

18.
Nanoscale ; 15(3): 1373-1391, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36594198

RESUMO

The widespread use of miniaturized electronic gadgets today faces stiff reliability obstacles from factors like stray electromagnetic signals. The challenge is to design lightweight shielding materials that combine small volume and high-frequency operations to reliably reduce/eliminate electromagnetic interference. Herein, in the first of its kind, a sequential interpenetrating polymeric network (IPN) membrane was used to host a CNT construct through a stimuli-responsive trigger. The proposed construct besides being robust, sustainable, and scalable is a universal approach to fabricate a CNT construct where conventional strategies are not amenable. This approach of self-assembling counter-charged CNTs also maximizes the number of CNTs in the final construct, thereby greatly enhancing the shielding performance dominated by 90% absorption in a wide frequency band of 8.2-26.5 GHz. The IPN-CNT construct achieves specific shielding effectiveness in the range of ca. 1607-5715 dB cm2 g-1 by tuning the thickness of the CNT construct with an endearing green index (gs ≈ 1.8). The performance of such an ultra-thin, light-weight IPN-CNT construct remained unchanged when subjected to 10 000 bending cycles and on exposure to different chemical environments, indicating outstanding mechanical/chemical stability.

19.
ACS Appl Mater Interfaces ; 14(43): 49140-49157, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36279251

RESUMO

Fabricating green electromagnetic interference (EMI) shields is the need of the hour because strong secondary reflections in the vicinity of the shield adversely affect the environment and the reliability of the neighboring devices. To this end, the present work aims to maximize the absorption-based EMI shielding through a multilayered construct comprising a porous structure (pore size less than λ/5), a highly conducting entity, and a layer to match the impedance. The elements of this construct were positioned so that the incoming electromagnetic (EM) radiation interacts with the other layers of the construct before the conducting entity. This positioning of the layers in the construct offers a high green shielding index (gs) and low reflection coefficient (R ∼ 0.1) with an exceptionally high percent absorption (up to 99%). Polyurethane (PU) foams were fabricated using the salt-leaching technique and strategically positioned with carbon nanotube (CNT) papers and polycarbonate (PC)-based films to obtain symmetric and asymmetric constructs. These structures were then employed to gain mechanistic insight into the directional dependency of shielding performance, gs, and heat dissipation ability. Interestingly, maximum total shielding effectiveness (SET) of -52 dB (88% absorption @8.2 GHz) and specific shielding effectiveness/thickness (SSEt) of -373 dB/cm2g were achieved for a symmetric construct whereas, for the asymmetric construct, the SET and SSEt were -37 dB and -280 dB/cm2g, respectively, with an exceptionally high gs of 8.6, the highest reported so far. The asymmetricity in the construct led to directional dependence of the absorption component (% SEA, shielding effectiveness due to absorption) and heat dissipation, primarily governed by the electrical and thermal conductivity gradient, respectively. This study opens new avenues in this field and reports constructs with an exceptionally high green index.

20.
Nanoscale Adv ; 4(2): 467-478, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36132692

RESUMO

We explored a unique concept in this study to develop a membrane containing a hierarchical porous architecture derived by etching a specific component from a demixed UCST blend as the support layer and a free-standing GO and a polyamide (PA) layer as functional surfaces. To selectively sieve ions and improve chlorine tolerance performance, three different strategies were proposed here. In the first case, the free-standing GO membrane was used as the active layer. In the second case, the free-standing GO was positioned in tandem with the PA layer formed in situ. In the third case, GO was added during the formation of the active PA layer in situ. The support layer with a gradient in pore sizes (realized by varying the composition in the blends) was fabricated via crystallization induced phase separation in a classical UCST system (PVDF/PMMA) and etching out the amorphous component (here PMMA). A gradient in the pore sizes was obtained by rationally stitching the various membranes obtained by varying the blends' composition. Pure water flux and rejection experiments were carried out to evaluate the performance of this composite membrane. This unique strategy resulted in excellent salt rejection (more than 95% for a monovalent ion), improved fouling resistance (more than 85%), excellent dye removal performance (more than 96% for a cationic dye), and outstanding chlorine tolerance performance and antibacterial activity. Thus, this study emphasizes that the free-standing GO membrane's positioning controls the membranes' overall performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA