Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(22): eadk9681, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820148

RESUMO

In response to energy and nutrient shortage, the liver triggers several catabolic processes to promote survival. Despite recent progress, the precise molecular mechanisms regulating the hepatic adaptation to fasting remain incompletely characterized. Here, we report the identification of hydroxysteroid dehydrogenase-like 2 (HSDL2) as a mitochondrial protein highly induced by fasting. We show that the activation of PGC1α-PPARα and the inhibition of the PI3K-mTORC1 axis stimulate HSDL2 expression in hepatocytes. We found that HSDL2 depletion decreases cholesterol conversion to bile acids (BAs) and impairs FXR activity. HSDL2 knockdown also reduces mitochondrial respiration, fatty acid oxidation, and TCA cycle activity. Bioinformatics analyses revealed that hepatic Hsdl2 expression positively associates with the postprandial excursion of various BA species in mice. We show that liver-specific HSDL2 depletion affects BA metabolism and decreases circulating cholesterol levels upon refeeding. Overall, our report identifies HSDL2 as a fasting-induced mitochondrial protein that links nutritional signals to BAs and cholesterol homeostasis.


Assuntos
Ácidos e Sais Biliares , Colesterol , Hidroxiesteroide Desidrogenases , Animais , Humanos , Camundongos , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Jejum/metabolismo , Hepatócitos/metabolismo , Homeostase , Fígado/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo
2.
JHEP Rep ; 5(12): 100904, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37942225

RESUMO

Background & Aims: Hepatic encephalopathy (HE) is defined as a reversible syndrome and therefore should resolve following liver transplantation (LT). However, neurological complications have been reported in up to 47% of LT recipients, which have been documented to be associated with a history of overt HE pre-LT. We hypothesise that multiple episodes of HE lead to permanent cell injury and exacerbate neurological dysfunction. Our goal was to evaluate the impact of cumulative HE episodes on neurological status and brain integrity in rats with chronic liver disease. Methods: Episodes of overt HE (loss of righting reflex) were induced following injection of ammonium acetate in bile duct ligation (BDL) rats (BDL-Ammonia) every 4 days starting at week 3 post-BDL. Neurobehaviour was evaluated after the last episode. Upon sacrifice, plasma ammonia, systemic oxidative stress, and inflammation markers were assessed. Neuronal markers including neuron-specific nuclear antigen and SMI311 (anti-neurofilament marker) and apoptotic markers (cleaved caspase-3, Bax, and Bcl2) were measured. Total antioxidant capacity, oxidative stress marker (4-hydroxynonenal), and proinflammatory cytokines (tumour necrosis factor-alpha and interleukin-1ß) were measured in brain (hippocampus, frontal cortex, and cerebellum). Proteomic analysis was conducted in the hippocampus. Results: In hippocampus of BDL-Ammonia rats, cleaved caspase-3 and Bax/Bcl2 ratio were significantly increased, whereas NeuN and SMI311 were significantly decreased compared with BDL-Vehicle rats. Higher levels of oxidative stress-induced post-translational modified proteins were found in hippocampus of BDL-Ammonia group which were associated with a lower total antioxidant capacity. Conclusions: Ammonia-induced episodes of overt HE caused neuronal cell injury/death in BDL rats. These results suggest that multiple bouts of HE can be detrimental on the integrity of the brain, translating to irreversibility and hence neurological complications post-LT. Impact and implications: Hepatic encephalopathy (HE) is defined as a reversible neuropsychiatric syndrome resolving following liver transplantation (LT); however, ∼47% of patients demonstrate neurological impairments after LT, which are associated with a previous history of overt HE pre-LT. Our study indicates that multiple episodes of overt HE can cause permanent neuronal damage which may lead to neurological complications after LT. Nevertheless, preventing the occurrence of overt HE episodes is critical for reducing the risk of irreversible neuronal injury in patients with cirrhosis.

3.
J Neurochem ; 162(4): 337-351, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35771118

RESUMO

Hepatic encephalopathy (HE) is a debilitating neurological complication of chronic liver disease (CLD). Hyperammonemia plays an important role in HE's pathogenesis, acting synergistically with systemic oxidative stress. During CLD, muscle plays a compensatory role in detoxifying ammonia, and therefore muscle loss leads to an increase in the risk of developing HE. With most animal studies involving males, sex's impact on the development of CLD and associated complications such as HE and muscle loss remains unknown. Therefore, we aimed to identify the impact of sex on CLD, HE, and muscle mass loss in a rodent model of CLD. Liver injury markers, hyperammonemia, oxidative stress, muscle mass, and ammonia clearance were measured in female and male bile-duct ligated (BDL) rats. In addition, covert HE was assessed in females while ammonia-precipitated severe HE was assessed in female and male BDL rats, and male BDL rats treated with allopurinol (100 mg/kg), an antioxidant (xanthine oxidase inhibitor). Female BDL developed CLD and HE (impaired motor coordination and night activity) compared to respective SHAM. Hyperammonemia and muscle ammonia clearance were similar between female and male BDL. However, only female BDL rats did not develop muscle loss, brain edema, and short-term memory impairment (vs. female SHAM) and systemic oxidative stress and decreased albumin levels (vs. male BDL). Furthermore, both female BDL and allopurinol-treated male BDL rats were protected against ammonia-induced overt HE. In conclusion, female and male BDL rats develop distinct features of CLD and HE, with systemic oxidative stress playing a pivotal role in the susceptibility to ammonia-precipitated overt HE.


Assuntos
Encefalopatia Hepática , Hiperamonemia , Alopurinol , Amônia , Animais , Bile , Modelos Animais de Doenças , Feminino , Encefalopatia Hepática/etiologia , Hiperamonemia/etiologia , Masculino , Estresse Oxidativo , Ratos
4.
Ageing Res Rev ; 72: 101462, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34534683

RESUMO

Alzheimer's disease (AD) is a complex age-related neurodegenerative disease, associated with central and peripheral metabolic anomalies, such as impaired glucose utilization and insulin resistance. These observations led to a considerable interest not only in lifestyle-related interventions, but also in repurposing insulin and other anti-diabetic drugs to prevent or treat dementia. Body temperature is the oldest known metabolic readout and mechanisms underlying its maintenance fail in the elderly, when the incidence of AD rises. This raises the possibility that an age-associated thermoregulatory deficit contributes to energy failure underlying AD pathogenesis. Brown adipose tissue (BAT) plays a central role in thermogenesis and maintenance of body temperature. In recent years, the modulation of BAT activity has been increasingly demonstrated to regulate energy expenditure, insulin sensitivity and glucose utilization, which could also provide benefits for AD. Here, we review the evidence linking thermoregulation, BAT and insulin-related metabolic defects with AD, and we propose mechanisms through which correcting thermoregulatory impairments could slow the progression and delay the onset of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Tecido Adiposo Marrom/metabolismo , Idoso , Doença de Alzheimer/metabolismo , Regulação da Temperatura Corporal , Metabolismo Energético , Humanos , Doenças Neurodegenerativas/metabolismo , Termogênese
5.
Hepatol Commun ; 5(3): 446-460, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33681678

RESUMO

Obesity and diabetes are strongly associated not only with fatty liver but also cognitive dysfunction. Moreover, their presence, particularly in midlife, is recognized as a risk factor for Alzheimer's disease (AD). AD, the most common cause of dementia, is increasingly considered as a metabolic disease, although underlying pathogenic mechanisms remain unclear. The liver plays a major role in maintaining glucose and lipid homeostasis, as well as in clearing the AD neuropathogenic factor amyloid-ß (Aß) and in metabolizing cerebrosterol, a cerebral-derived oxysterol proposed as an AD biomarker. We hypothesized that liver impairment induced by obesity contributes to AD pathogenesis. We show that the AD triple transgenic mouse model (3xTg-AD) fed a chow diet presents a hepatic phenotype similar to nontransgenic controls (NTg) at 15 months of age. A high-fat diet (HFD), started at the age of 6 months and continued for 9 months, until sacrifice, induced hepatic steatosis in NTg, but not in 3xTg-AD mice, whereas HFD did not induce changes in hepatic fatty acid oxidation, de novo lipogenesis, and gluconeogenesis. HFD-induced obesity was associated with a reduction of insulin-degrading enzyme, one of the main hepatic enzymes responsible for Aß clearance. The hepatic rate of cerebrosterol glucuronidation was lower in obese 3xTg-AD than in nonobese controls (P < 0.05) and higher compared with obese NTg (P < 0.05), although circulating levels remained unchanged. Conclusion: Modulation of hepatic lipids, Aß, and cerebrosterol metabolism in obese 3xTg-AD mice differs from control mice. This study sheds light on the liver-brain axis, showing that the chronic presence of NAFLD and changes in liver function affect peripheral AD features and should be considered during development of biomarkers or AD therapeutic targets.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Dieta Hiperlipídica/efeitos adversos , Hidroxicolesteróis/metabolismo , Fígado/metabolismo , Doença de Alzheimer/etiologia , Animais , Encéfalo/metabolismo , Eixo Encéfalo-Intestino/fisiologia , Modelos Animais de Doenças , Lipogênese/fisiologia , Camundongos , Camundongos Obesos , Camundongos Transgênicos
6.
Liver Int ; 41(5): 1020-1032, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548108

RESUMO

Hyperammonemia associated with chronic liver disease (CLD) is implicated in the pathogenesis of hepatic encephalopathy (HE). The gut is a major source of ammonia production that contributes to hyperammonemia in CLD and HE and remains the primary therapeutic target for lowering hyperammonemia. As an ammonia-lowering strategy, Escherichia coli Nissle 1917 bacterium was genetically modified to consume and convert ammonia to arginine (S-ARG). S-ARG was further modified to additionally synthesize butyrate (S-ARG + BUT). Both strains were evaluated in bile-duct ligated (BDL) rats; experimental model of CLD and HE. METHODS: One-week post-surgery, BDLs received non-modified EcN (EcN), S-ARG, S-ARG + BUT (3x1011 CFU/day) or vehicle until sacrifice at 3 or 5 weeks. Plasma (ammonia/pro-inflammatory/liver function), liver fibrosis (hydroxyproline), liver mRNA (pro-inflammatory/fibrogenic/anti-apoptotic) and colon mRNA (pro-inflammatory) biomarkers were measured post-sacrifice. Memory, motor-coordination, muscle-strength and locomotion were assessed at 5 weeks. RESULTS: In BDL-Veh rats, hyperammonemia developed at 3 and further increased at 5 weeks. This rise was prevented by S-ARG and S-ARG + BUT, whereas EcN was ineffective. Memory impairment was prevented only in S-ARG + BUT vs BDL-Veh. Systemic inflammation (IL-10/MCP-1/endotoxin) increased at 3 and 5 weeks in BDL-Veh. S-ARG + BUT attenuated inflammation at both timepoints (except 5-week endotoxin) vs BDL-Veh, whereas S-ARG only attenuated IP-10 and MCP-1 at 3 weeks. Circulating ALT/AST/ALP/GGT/albumin/bilirubin and gene expression of liver function markers (IL-10/IL-6/IL-1ß/TGF-ß/α-SMA/collagen-1α1/Bcl-2) were not normalized by either strain. Colonic mRNA (TNF-α/IL-1ß/occludin) markers were attenuated by synthetic strains at both timepoints vs BDL-Veh. CONCLUSION: S-ARG and S-ARG + BUT attenuated hyperammonemia, with S-ARG + BUT additional memory protection likely due to greater anti-inflammatory effect. These innovative strategies, particularly S-ARG + BUT, have potential to prevent HE.


Assuntos
Hiperamonemia , Animais , Bile , Ductos Biliares , Modelos Animais de Doenças , Escherichia coli , Ligadura , Ratos
7.
J Neurochem ; 157(3): 561-573, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33382098

RESUMO

Hepatic encephalopathy (HE) is a debilitating neurological complication of cirrhosis. By definition, HE is considered a reversible disorder, and therefore HE should resolve following liver transplantation (LT). However, persisting neurological complications are observed in as many as 47% of LT recipients. LT is an invasive surgical procedure accompanied by various perioperative factors such as blood loss and hypotension which could influence outcomes post-LT. We hypothesize that minimal HE (MHE) renders the brain frail and susceptible to hypotension-induced neuronal cell death. Six-week bile duct-ligated (BDL) rats with MHE and respective SHAM-controls were used. Several degrees of hypotension (mean arterial pressure of 30, 60 and 90 mm Hg) were induced via blood withdrawal from the femoral artery and maintained for 120 min. Brains were collected for neuronal cell count and apoptotic analysis. In a separate group, BDL rats were treated for MHE with the ammonia-lowering strategy ornithine phenylacetate (OP; MNK-6105), administered orally (1 g/kg) for 3 weeks before induction of hypotension. Hypotension 30 and 60 mm Hg (not 90 mm Hg) significantly decreased neuronal marker expression (NeuN) and cresyl violet staining in the frontal cortex compared to respective hypotensive SHAM-operated controls as well as non-hypotensive BDL rats. Neuronal degeneration was associated with an increase in cleaved caspase-3, suggesting the mechanism of cell death was apoptotic. OP treatment attenuated hyperammonaemia, improved anxiety and activity, and protected the brain against hypotension-induced neuronal cell death. Our findings demonstrate that rats with chronic liver disease and MHE are more susceptible to hypotension-induced neuronal cell degeneration. This highlights MHE at the time of LT is a risk factor for poor neurological outcome post-transplant and that treating for MHE pre-LT might reduce this risk.


Assuntos
Amônia/metabolismo , Ductos Biliares , Hipotensão/patologia , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Amônia/sangue , Animais , Antígenos Nucleares/metabolismo , Ansiedade/psicologia , Apoptose , Comportamento Animal , Caspase 3/metabolismo , Circulação Cerebrovascular/efeitos dos fármacos , Modelos Animais de Doenças , Encefalopatia Hepática/patologia , Hiperamonemia , Ligadura , Masculino , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/psicologia , Ornitina/análogos & derivados , Ornitina/uso terapêutico , Ratos , Ratos Sprague-Dawley
8.
J Neuroinflammation ; 16(1): 3, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30611289

RESUMO

BACKGROUND: Immunologic abnormalities have been described in peripheral blood and central nervous system of patients suffering from Alzheimer's disease (AD), yet their role in the pathogenesis still remains poorly defined. AIM AND METHODS: We used the triple transgenic mouse model (3xTg-AD) to reproduce Aß (amyloid plaques) and tau (neurofibrillary tangles) neuropathologies. We analyzed important features of the adaptive immune system in serum, primary (bone marrow) as well as secondary (spleen) lymphoid organs of 12-month-old 3xTg-AD mice using flow cytometry and ELISPOT. We further investigated serum cytokines of 9- and 13-month-old 3xTg-AD mice using multiplex ELISA. Results were compared to age-matched non-transgenic controls (NTg). RESULTS: In the bone marrow of 12-month-old 3xTg-AD mice, we detected decreased proportions of short-term reconstituting hematopoietic stem cells (0.58-fold, P = 0.0116), while lymphocyte, granulocyte, and monocyte populations remained unchanged. Our results also point to increased activation of both B and T lymphocytes. Indeed, we report elevated levels of plasma cells in bone marrow (1.3-fold, P = 0.0405) along with a 5.4-fold rise in serum IgG concentration (P < 0.0001) in 3xTg-AD animals. Furthermore, higher levels of interleukin (IL)-2 were detected in serum of 9- and 13-month-old 3xTg-AD mice (P = 0.0018). Along with increased concentrations of IL-17 (P = 0.0115) and granulocyte-macrophage colony-stimulating factor (P = 0.0085), these data support helper T lymphocyte activation with Th17 polarization. CONCLUSION: Collectively, these results suggest that the 3xTg-AD model mimics modifications of the adaptive immunity changes previously observed in human AD patients and underscore the activation of both valuable and harmful pathways of immunity in AD.


Assuntos
Imunidade Adaptativa/fisiologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Citocinas/metabolismo , Linfócitos/patologia , Imunidade Adaptativa/genética , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Medula Óssea/patologia , Polaridade Celular/genética , Granulócitos/patologia , Humanos , Camundongos , Camundongos Transgênicos , Monócitos/patologia , Mutação/genética , Emaranhados Neurofibrilares , Presenilina-1/genética , Baço/patologia , Proteínas tau/genética
9.
Liver Int ; 38(1): 102-112, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28665498

RESUMO

BACKGROUND & AIMS: Recent studies suggest that heparins reduce liver fibrosis and the risk of decompensation of liver disease. Here, we evaluated the effects of enoxaparin in several experimental models of advanced cirrhosis. METHODS: Cirrhosis was induced in male Sprague-Dawley (SD) rats by: (i) Oral gavage with carbon tetrachloride (CCl4ORAL ), (ii) Bile duct ligation (BDL) and (iii) CCl4 inhalation (CCl4INH ). Rats received saline or enoxaparin s.c. (40 IU/Kg/d or 180 IU/Kg/d) following various protocols. Blood biochemical parameters, liver fibrosis, endothelium- and fibrosis-related genes, portal pressure, splenomegaly, bacterial translocation, systemic inflammation and survival were evaluated. Endothelial dysfunction was assessed by in situ bivascular liver perfusions. RESULTS: Enoxaparin did not ameliorate liver function, liver fibrosis, profibrogenic gene expression, portal hypertension, splenomegaly, ascites development and infection, serum IL-6 levels or survival in rats with CCl4ORAL or BDL-induced cirrhosis. Contrarily, enoxaparin worsened portal pressure in BDL rats and decreased survival in CCl4ORAL rats. In CCl4INH rats, enoxaparin had no effects on hepatic endothelial dysfunction, except for correcting the hepatic arterial dysfunction when enoxaparin was started with the CCl4 exposure. In these rats, however, enoxaparin increased liver fibrosis and the absolute values of portal venous and sinusoidal resistance. CONCLUSIONS: Our results do not support a role of enoxaparin for improving liver fibrosis, portal hypertension or endothelial dysfunction in active disease at advanced stages of cirrhosis. These disease-related factors and the possibility of a limited therapeutic window should be considered in future studies evaluating the use of anticoagulants in cirrhosis.


Assuntos
Anticoagulantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Enoxaparina/farmacologia , Hipertensão Portal/prevenção & controle , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Pressão na Veia Porta/efeitos dos fármacos , Animais , Anticoagulantes/toxicidade , Translocação Bacteriana/efeitos dos fármacos , Biomarcadores/sangue , Coagulação Sanguínea/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Enoxaparina/toxicidade , Hipertensão Portal/sangue , Hipertensão Portal/patologia , Hipertensão Portal/fisiopatologia , Mediadores da Inflamação/sangue , Fígado/metabolismo , Fígado/patologia , Circulação Hepática/efeitos dos fármacos , Cirrose Hepática Experimental/sangue , Cirrose Hepática Experimental/patologia , Cirrose Hepática Experimental/fisiopatologia , Masculino , Microcirculação/efeitos dos fármacos , Ratos Sprague-Dawley
10.
Metab Brain Dis ; 32(2): 513-518, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27981407

RESUMO

Muscle mass loss and hepatic encephalopathy (complex neuropsychiatric disorder) are serious complications of chronic liver disease (cirrhosis) which impact negatively on clinical outcome and quality of life and increase mortality. Liver disease leads to hyperammonemia and ammonia toxicity is believed to play a major role in the pathogenesis of hepatic encephalopathy. However, the effects of ammonia are not brain-specific and therefore may also affect other organs and tissues including muscle. The precise pathophysiological mechanisms underlying muscle wasting in chronic liver disease remains to be elucidated. In the present study, we characterized body composition as well as muscle protein synthesis in cirrhotic rats with hepatic encephalopathy using the 6-week bile duct ligation (BDL) model which recapitulates the main features of cirrhosis. Compared to sham-operated control animals, BDL rats display significant decreased gain in body weight, altered body composition, decreased gastrocnemius muscle mass and circumference as well as altered muscle morphology. Muscle protein synthesis was also significantly reduced in BDL rats compared to control animals. These findings demonstrate that the 6-week BDL experimental rat is a relevant model to study liver disease-induced muscle mass loss.


Assuntos
Ductos Biliares , Cirrose Hepática Experimental/patologia , Músculo Esquelético/patologia , Amônia/sangue , Animais , Composição de Bases , Modelos Animais de Doenças , Ingestão de Alimentos , Encefalopatia Hepática , Hiperamonemia/etiologia , Hiperamonemia/patologia , Ligadura , Masculino , Proteínas Musculares/metabolismo , Ratos , Ratos Sprague-Dawley , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA