RESUMO
Human CD4+EOMES+ T cells are heterogeneous and contain Th1-cells, Tr1-cells, and CD4+CTL. Tr1- cells and non-classical EOMES+ Th1-cells displayed, respectively, anti- and pro-inflammatory cytokine profiles, but both expressed granzyme-K, produced IFN-γ, and suppressed T-cell proliferation. Diffusion map suggested a progressive CD4+T-cell differentiation from naïve to cytotoxic cells and identified EOMES+Th1-cells as putative Tr1-cell precursors (pre-Tr1).
Assuntos
Interleucina-10 , Subpopulações de Linfócitos T , Humanos , Linfócitos T Reguladores , Linfócitos T CD4-Positivos , Células Th1 , Diferenciação Celular , Proteínas com Domínio T/genéticaRESUMO
IFNγ-producing ex-Th17 cells ['Th1/17'] were shown to play a key pathogenic role in experimental colitis and are abundant in the intestine. Here, we identified and characterised a novel, potentially colitogenic subset of Th17 cells in the intestine of patients with Crohn's disease [CD]. Human Th17 cells expressing CCR5 ['pTh17'] co-expressed T-bet and RORC/γt and produced very high levels of IL-17, together with IFN-γ. They had a gene signature of Th17 effector cells and were distinct from established Th1/17 cells. pTh17 cells, but not Th1/17 cells, were associated with intestinal inflammation in CD, and decreased upon successful anti-TNF therapy with infliximab. Conventional CCR5[-]Th17 cells differentiated to pTh17 cells with IL-23 in vitro. Moreover, anti-IL-23 therapy with risankizumab strongly reduced pTh17 cells in the intestine. Importantly, intestinal pTh17 cells were selectively activated by adherent-invasive Escherichia coli [AIEC], but not by a commensal/probiotic E. coli strain. AIEC induced high levels of IL-23 and RANTES from dendritic cells [DC]. Intestinal CCR5+Th1/17 cells responded instead to cytomegalovirus and were reduced in ulcerative colitis [UC], suggesting an unexpected protective role. In conclusion, we identified an IL-23-inducible subset of human intestinal Th17 cells. pTh17 cells produced high levels of pro-inflammatory cytokines, were selectively associated with intestinal inflammation in CD, and responded to CD-associated AIEC, suggesting a key colitogenic role.
Assuntos
Doença de Crohn , Infecções por Escherichia coli , Humanos , Doença de Crohn/patologia , Escherichia coli , Células Th17/patologia , Inibidores do Fator de Necrose Tumoral , Intestinos/patologia , Inflamação/patologia , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/patologia , Interleucina-23 , Mucosa Intestinal/patologia , Aderência BacterianaRESUMO
Mesenchymal stromal cells (MSCs) have been employed in vitro to support hematopoietic stem and progenitor cell (HSPC) expansion and in vivo to promote HSPC engraftment. Based on these studies, we developed an MSC-based co-culture system to optimize the transplantation outcome of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene-edited (GE) human HSPCs. We show that bone marrow (BM)-MSCs produce several hematopoietic supportive and anti-inflammatory factors capable of alleviating the proliferation arrest and mitigating the apoptotic and inflammatory programs activated in GE-HSPCs, improving their expansion and clonogenic potential in vitro. The use of BM-MSCs resulted in superior human engraftment and increased clonal output of GE-HSPCs contributing to the early phase of hematological reconstitution in the peripheral blood of transplanted mice. In conclusion, our work poses the biological bases for a novel clinical use of BM-MSCs to promote engraftment of GE-HSPCs and improve their transplantation outcome.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Edição de Genes , Sistemas CRISPR-Cas , Células-Tronco Hematopoéticas , Transplante de Células-Tronco Hematopoéticas/métodosRESUMO
Regulatory T (Treg) cells are a barrier for tumor immunity and a target for immunotherapy. Using single-cell transcriptomics, we found that CD4+ T cells infiltrating primary and metastatic colorectal cancer and non-small-cell lung cancer are highly enriched for two subsets of comparable size and suppressor function comprising forkhead box protein P3+ Treg and eomesodermin homolog (EOMES)+ type 1 regulatory T (Tr1)-like cells also expressing granzyme K and chitinase-3-like protein 2. EOMES+ Tr1-like cells, but not Treg cells, were clonally related to effector T cells and were clonally expanded in primary and metastatic tumors, which is consistent with their proliferation and differentiation in situ. Using chitinase-3-like protein 2 as a subset signature, we found that the EOMES+ Tr1-like subset correlates with disease progression but is also associated with response to programmed cell death protein 1-targeted immunotherapy. Collectively, these findings highlight the heterogeneity of Treg cells that accumulate in primary tumors and metastases and identify a new prospective target for cancer immunotherapy.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Hematopoiese Clonal/imunologia , Neoplasias Colorretais/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/secundário , Carcinoma Pulmonar de Células não Pequenas/terapia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Proliferação de Células/genética , Quimioterapia Adjuvante/métodos , Quitinases/metabolismo , Colectomia , Colo/patologia , Colo/cirurgia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Conjuntos de Dados como Assunto , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/imunologia , Feminino , Citometria de Fluxo , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica/imunologia , Granzimas/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Receptor de Morte Celular Programada 1/antagonistas & inibidores , RNA-Seq , Análise de Célula Única , Proteínas com Domínio T/metabolismo , Linfócitos T Reguladores/metabolismoRESUMO
: Mesenchymal stromal cells (MSCs) are crucial elements in the bone marrow (BM) niche where they provide physical support and secrete soluble factors to control and maintain hematopoietic stem progenitor cells (HSPCs). Given their role in the BM niche and HSPC support, MSCs have been employed in the clinical setting to expand ex-vivo HSPCs, as well as to facilitate HSPC engraftment in vivo. Specific alterations in the mesenchymal compartment have been described in hematological malignancies, as well as in rare genetic disorders, diseases that are amenable to allogeneic hematopoietic stem cell transplantation (HSCT), and ex-vivo HSPC-gene therapy (HSC-GT). Dissecting the in vivo function of human MSCs and studying their biological and functional properties in these diseases is a critical requirement to optimize transplantation outcomes. In this review, the role of MSCs in the orchestration of the BM niche will be revised, and alterations in the mesenchymal compartment in specific disorders will be discussed, focusing on the need to correct and restore a proper microenvironment to ameliorate transplantation procedures, and more in general disease outcomes.
RESUMO
Cancer stem cells (CSCs) contribute to disease progression and treatment failure in human cancers. The balance among self-renewal, differentiation, and senescence determines the expansion or progressive exhaustion of CSCs. Targeting these processes might lead to novel anticancer therapies. Here, we uncover a novel link between BRD4, mitochondrial dynamics, and self-renewal of prostate CSCs. Targeting BRD4 by genetic knockdown or chemical inhibitors blocked mitochondrial fission and caused CSC exhaustion and loss of tumorigenic capability. Depletion of CSCs occurred in multiple prostate cancer models, indicating a common vulnerability and dependency on mitochondrial dynamics. These effects depended on rewiring of the BRD4-driven transcription and repression of mitochondrial fission factor (Mff). Knockdown of Mff reproduced the effects of BRD4 inhibition, whereas ectopic Mff expression rescued prostate CSCs from exhaustion. This novel concept of targeting mitochondrial plasticity in CSCs through BRD4 inhibition provides a new paradigm for developing more effective treatment strategies for prostate cancer.
Assuntos
Epigênese Genética/genética , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Ciclo Celular , Proliferação de Células , Senescência Celular , Humanos , Masculino , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neoplasias da Próstata/patologia , Células Tumorais CultivadasRESUMO
Whether human IL-10-producing regulatory T cells ("Tr1") represent a distinct differentiation lineage or an unstable activation stage remains a key unsolved issue. Here, we report that Eomesodermin (Eomes) acted as a lineage-defining transcription factor in human IFN-γ/IL-10 coproducing Tr1-like cells. In vivo occurring Tr1-like cells expressed Eomes, and were clearly distinct from all other CD4+ T-cell subsets, including conventional cytotoxic CD4+ T cells. They expressed Granzyme (Gzm) K, but had lost CD40L and IL-7R expression. Eomes antagonized the Th17 fate, and directly controlled IFN-γ and GzmK expression. However, Eomes binding to the IL-10 promoter was not detectable in human CD4+ T cells, presumably because critical Tbox binding sites of the mouse were not conserved. A precommitment to a Tr1-like fate, i.e. concominant induction of Eomes, GzmK, and IFN-γ, was promoted by IL-4 and IL-12-secreting myeloid dendritic cells. Consistently, Th1 effector memory cells contained precommitted Eomes+ GzmK+ T cells. Stimulation with T-cell receptor (TCR) agonists and IL-27 promoted the generation of Tr1-like effector cells by inducing switching from CD40L to IL-10. Importantly, CD4+ Eomes+ T-cell subsets were present in lymphoid and nonlymphoid tissues, and their frequencies varied systemically in patients with inflammatory bowel disease and graft-versus-host disease. We propose that Eomes+ Tr1-like cells are effector cells of a unique GzmK-expressing CD4+ T-cell subset.
Assuntos
Doença Enxerto-Hospedeiro/imunologia , Doenças Inflamatórias Intestinais/imunologia , Proteínas com Domínio T/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Regulação da Expressão Gênica , Granzimas/metabolismo , Humanos , Memória Imunológica , Interferon gama/metabolismo , Interleucina-10/metabolismo , Camundongos , Proteínas com Domínio T/genéticaRESUMO
BACKGROUND: IL-10 is an anti-inflammatory cytokine required for intestinal immune homeostasis. It mediates suppression of T-cell responses by type 1 regulatory T (TR1) cells but is also produced by CD25+ regulatory T (Treg) cells. OBJECTIVE: We aimed to identify and characterize human intestinal TR1 cells and to investigate whether they are a relevant cellular source of IL-10 in patients with inflammatory bowel diseases (IBDs). METHODS: CD4+ T cells isolated from the intestinal lamina propria of human subjects and mice were analyzed for phenotype, cytokine production, and suppressive capacities. Intracellular IL-10 expression by CD4+ T-cell subsets in the inflamed guts of patients with IBD (Crohn disease or ulcerative colitis) was compared with that in cells from noninflamed control subjects. Finally, the effects of proinflammatory cytokines on T-cell IL-10 expression were analyzed, and IL-1ß and IL-23 responsiveness was assessed. RESULTS: Intestinal TR1 cells could be identified by coexpression of CCR5 and programmed cell death protein 1 (PD-1) in human subjects and mice. CCR5+PD-1+ TR1 cells expressed IFN-γ and efficiently suppressed T-cell proliferation and transfer colitis. Intestinal IFN-γ+ TR1 cells, but not IL-7 receptor-positive TH cells or CD25+ Treg cells, showed lower IL-10 expression in patients with IBDs. TR1 cells were responsive to IL-23, and IFN-γ+ TR1 cells downregulated IL-10 with IL-1ß and IL-23. Conversely, CD25+ Treg cells expressed higher levels of IL-1 receptor but showed stable IL-10 expression. CONCLUSIONS: We provide the first ex vivo characterization of human intestinal TR1 cells. Selective downregulation of IL-10 by IFN-γ+ TR1 cells in response to proinflammatory cytokines is likely to drive excessive intestinal inflammation in patients with IBDs.