Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Opt Express ; 32(2): 2507-2526, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297778

RESUMO

We recently found a significant bias between spectral diffuse attenuation coefficient (Kd(λ)) retrievals by common ocean color algorithms and measurements from profiling floats [Remote. Sens.14, 4500 (2022)10.3390/rs14184500]. Here we show, using a multi-satellite match-up dataset, that the bias is markedly reduced by simple "tuning" of the algorithm's empirical coefficients. However, while the float dataset encompasses a larger proportion of the ocean's variability than previously used datasets, it does not cover the whole range of variability of observed remote sensing reflectance (Rrs). Thus, using algorithms tuned to this more comprehensive dataset may still result in a temporal and/or geographical bias in global application. To address this generalization issue, we evaluated a variety of analytical algorithms based on radiative transfer theory and settled on a specific one. This algorithm computes Kd(λ) from inherent optical properties (IOPs) obtained from an Rrs inversion and information about the angular distribution of the radiance transmitted through the air/ocean interface. The resulting Kd(λ) estimates at 412 and 490 nm were not appreciably biased against the float measurements. Evaluation using other in-situ datasets and radiative transfer simulations was also satisfactory. Statistical performance was good in both clear and turbid waters. Further work should be conducted to examine whether the tuned algorithms and/or the new analytical algorithm demonstrate adequate hyperspectral performance.

3.
ISME Commun ; 3(1): 101, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740029

RESUMO

Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography using global satellite observations. Six plankton community types were identified from a co-occurrence network inferred using a novel rDNA 18 S V4 planetary-scale eukaryotic metabarcoding dataset. Machine learning techniques were then applied to construct a model that predicted these community types from satellite data. The model showed an overall 67% accuracy in the prediction of the community types. The prediction using 17 satellite-derived parameters showed better performance than that using only temperature and/or the concentration of chlorophyll a. The constructed model predicted the global spatiotemporal distribution of community types over 19 years. The predicted distributions exhibited strong seasonal changes in community types in the subarctic-subtropical boundary regions, which were consistent with previous field observations. The model also identified the long-term trends in the distribution of community types, which suggested responses to ocean warming.

4.
Nature ; 619(7970): 551-554, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438519

RESUMO

Strong natural variability has been thought to mask possible climate-change-driven trends in phytoplankton populations from Earth-observing satellites. More than 30 years of continuous data were thought to be needed to detect a trend driven by climate change1. Here we show that climate-change trends emerge more rapidly in ocean colour (remote-sensing reflectance, Rrs), because Rrs is multivariate and some wavebands have low interannual variability. We analyse a 20-year Rrs time series from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite, and find significant trends in Rrs for 56% of the global surface ocean, mainly equatorward of 40°. The climate-change signal in Rrs emerges after 20 years in similar regions covering a similar fraction of the ocean in a state-of-the-art ecosystem model2, which suggests that our observed trends indicate shifts in ocean colour-and, by extension, in surface-ocean ecosystems-that are driven by climate change. On the whole, low-latitude oceans have become greener in the past 20 years.


Assuntos
Mudança Climática , Cor , Ecossistema , Oceanos e Mares , Fitoplâncton , Imagens de Satélites , Análise Espaço-Temporal , Mudança Climática/estatística & dados numéricos , Ecologia , Fitoplâncton/isolamento & purificação , Fitoplâncton/fisiologia , Modelos Climáticos , Fatores de Tempo
5.
Research (Wash D C) ; 6: 0201, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37475723

RESUMO

Measuring the characteristics of seawater constituent is in great demand for studies of marine ecosystems and biogeochemistry. However, existing techniques based on remote sensing or in situ samplings present various tradeoffs with regard to the diversity, synchronism, temporal-spatial resolution, and depth-resolved capacity of their data products. Here, we demonstrate a novel oceanic triple-field-of-view (FOV) high-spectral-resolution lidar (HSRL) with an iterative retrieval approach. This technique provides, for the first time, comprehensive, continuous, and vertical measurements of seawater absorption coefficient, scattering coefficient, and slope of particle size distribution, which are validated by simulations and field experiments. Furthermore, it depicts valuable application potentials in the accuracy improvement of seawater classification and the continuous estimation of depth-resolved particulate organic carbon export. The triple-FOV HSRL with high performance could greatly increase the knowledge of seawater constituents and promote the understanding of marine ecosystems and biogeochemistry.

6.
Sci Rep ; 13(1): 11589, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463961

RESUMO

With climate projections questioning the future survival of stony corals and their dominance as tropical reef builders, it is critical to understand the adaptive capacity of corals to ongoing climate change. Biological mediation of the carbonate chemistry of the coral calcifying fluid is a fundamental component for assessing the response of corals to global threats. The Tara Pacific expedition (2016-2018) provided an opportunity to investigate calcification patterns in extant corals throughout the Pacific Ocean. Cores from colonies of the massive Porites and Diploastrea genera were collected from different environments to assess calcification parameters of long-lived reef-building corals. At the basin scale of the Pacific Ocean, we show that both genera systematically up-regulate their calcifying fluid pH and dissolved inorganic carbon to achieve efficient skeletal precipitation. However, while Porites corals increase the aragonite saturation state of the calcifying fluid (Ωcf) at higher temperatures to enhance their calcification capacity, Diploastrea show a steady homeostatic Ωcf across the Pacific temperature gradient. Thus, the extent to which Diploastrea responds to ocean warming and/or acidification is unclear, and it deserves further attention whether this is beneficial or detrimental to future survival of this coral genus.


Assuntos
Antozoários , Calcinose , Animais , Antozoários/fisiologia , Recifes de Corais , Regulação para Cima , Concentração de Íons de Hidrogênio , Carbonatos/metabolismo , Carbonato de Cálcio/metabolismo , Calcificação Fisiológica/fisiologia , Água do Mar
7.
Sensors (Basel) ; 23(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37420939

RESUMO

The authors wish to correct the following errors in the original paper [...].

8.
PLoS One ; 18(7): e0288114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418487

RESUMO

Viral lysis of phytoplankton is one of the most common forms of death on Earth. Building on an assay used extensively to assess rates of phytoplankton loss to predation by grazers, lysis rates are increasingly quantified through dilution-based techniques. In this approach, dilution of viruses and hosts are expected to reduce infection rates and thus increase host net growth rates (i.e., accumulation rates). The difference between diluted and undiluted host growth rates is interpreted as a measurable proxy for the rate of viral lytic death. These assays are usually conducted in volumes ≥ 1 L. To increase throughput, we implemented a miniaturized, high-throughput, high-replication, flow cytometric microplate dilution assay to measure viral lysis in environmental samples sourced from a suburban pond and the North Atlantic Ocean. The most notable outcome we observed was a decline in phytoplankton densities that was exacerbated by dilution, instead of the increased growth rates expected from lowered virus-phytoplankton encounters. We sought to explain this counterintuitive outcome using theoretical, environmental, and experimental analyses. Our study shows that, while die-offs could be partly explained by a 'plate effect' due to small incubation volumes and cells adhering to walls, the declines in phytoplankton densities are not volume-dependent. Rather, they are driven by many density- and physiology-dependent effects of dilution on predation pressure, nutrient limitation, and growth, all of which violate the original assumptions of dilution assays. As these effects are volume-independent, these processes likely occur in all dilution assays that our analyses show to be remarkably sensitive to dilution-altered phytoplankton growth and insensitive to actual predation pressure. Incorporating altered growth as well as predation, we present a logical framework that categorizes locations by the relative dominance of these mechanisms, with general applicability to dilution-based assays.


Assuntos
Comportamento Predatório , Vírus , Animais , Fitoplâncton , Oceano Atlântico , Lagoas
9.
Nat Commun ; 14(1): 3038, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263999

RESUMO

Telomeres are environment-sensitive regulators of health and aging. Here,we present telomere DNA length analysis of two reef-building coral genera revealing that the long- and short-term water thermal regime is a key driver of between-colony variation across the Pacific Ocean. Notably, there are differences between the two studied genera. The telomere DNA lengths of the short-lived, more stress-sensitive Pocillopora spp. colonies were largely determined by seasonal temperature variation, whereas those of the long-lived, more stress-resistant Porites spp. colonies were insensitive to seasonal patterns, but rather influenced by past thermal anomalies. These results reveal marked differences in telomere DNA length regulation between two evolutionary distant coral genera exhibiting specific life-history traits. We propose that environmentally regulated mechanisms of telomere maintenance are linked to organismal performances, a matter of paramount importance considering the effects of climate change on health.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Temperatura , Estações do Ano , DNA/genética
10.
Nat Commun ; 14(1): 3039, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264002

RESUMO

Coral reefs are among the most diverse ecosystems on Earth. They support high biodiversity of multicellular organisms that strongly rely on associated microorganisms for health and nutrition. However, the extent of the coral reef microbiome diversity and its distribution at the oceanic basin-scale remains to be explored. Here, we systematically sampled 3 coral morphotypes, 2 fish species, and planktonic communities in 99 reefs from 32 islands across the Pacific Ocean, to assess reef microbiome composition and biogeography. We show a very large richness of reef microorganisms compared to other environments, which extrapolated to all fishes and corals of the Pacific, approximates the current estimated total prokaryotic diversity for the entire Earth. Microbial communities vary among and within the 3 animal biomes (coral, fish, plankton), and geographically. For corals, the cross-ocean patterns of diversity are different from those known for other multicellular organisms. Within each coral morphotype, community composition is always determined by geographic distance first, both at the island and across ocean scale, and then by environment. Our unprecedented sampling effort of coral reef microbiomes, as part of the Tara Pacific expedition, provides new insight into the global microbial diversity, the factors driving their distribution, and the biocomplexity of reef ecosystems.


Assuntos
Antozoários , Microbiota , Animais , Recifes de Corais , Oceano Pacífico , Biodiversidade , Peixes , Plâncton
11.
Nat Commun ; 14(1): 3037, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264015

RESUMO

Health and resilience of the coral holobiont depend on diverse bacterial communities often dominated by key marine symbionts of the Endozoicomonadaceae family. The factors controlling their distribution and their functional diversity remain, however, poorly known. Here, we study the ecology of Endozoicomonadaceae at an ocean basin-scale by sampling specimens from three coral genera (Pocillopora, Porites, Millepora) on 99 reefs from 32 islands across the Pacific Ocean. The analysis of 2447 metabarcoding and 270 metagenomic samples reveals that each coral genus harbored a distinct new species of Endozoicomonadaceae. These species are composed of nine lineages that have distinct biogeographic patterns. The most common one, found in Pocillopora, appears to be a globally distributed symbiont with distinct metabolic capabilities, including the synthesis of amino acids and vitamins not produced by the host. The other lineages are structured partly by the host genetic lineage in Pocillopora and mainly by the geographic location in Porites. Millepora is more rarely associated to Endozoicomonadaceae. Our results show that different coral genera exhibit distinct strategies of host-Endozoicomonadaceae associations that are defined at the bacteria lineage level.


Assuntos
Antozoários , Gammaproteobacteria , Animais , Antozoários/microbiologia , Oceano Pacífico , Ecologia , Bactérias , Recifes de Corais
12.
Nat Commun ; 14(1): 3056, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264036

RESUMO

Heat waves are causing declines in coral reefs globally. Coral thermal responses depend on multiple, interacting drivers, such as past thermal exposure, endosymbiont community composition, and host genotype. This makes the understanding of their relative roles in adaptive and/or plastic responses crucial for anticipating impacts of future warming. Here, we extracted DNA and RNA from 102 Pocillopora colonies collected from 32 sites on 11 islands across the Pacific Ocean to characterize host-photosymbiont fidelity and to investigate patterns of gene expression across a historical thermal gradient. We report high host-photosymbiont fidelity and show that coral and microalgal gene expression respond to different drivers. Differences in photosymbiotic association had only weak impacts on host gene expression, which was more strongly correlated with the historical thermal environment, whereas, photosymbiont gene expression was largely determined by microalgal lineage. Overall, our results reveal a three-tiered strategy of thermal acclimatization in Pocillopora underpinned by host-photosymbiont specificity, host transcriptomic plasticity, and differential photosymbiotic association under extreme warming.


Assuntos
Antozoários , Transcriptoma , Animais , Oceano Pacífico , Transcriptoma/genética , Antozoários/genética , Aclimatação/genética , Recifes de Corais
13.
Sci Data ; 10(1): 326, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264047

RESUMO

Coral reef science is a fast-growing field propelled by the need to better understand coral health and resilience to devise strategies to slow reef loss resulting from environmental stresses. Key to coral resilience are the symbiotic interactions established within a complex holobiont, i.e. the multipartite assemblages comprising the coral host organism, endosymbiotic dinoflagellates, bacteria, archaea, fungi, and viruses. Tara Pacific is an ambitious project built upon the experience of previous Tara Oceans expeditions, and leveraging state-of-the-art sequencing technologies and analyses to dissect the biodiversity and biocomplexity of the coral holobiont screened across most archipelagos spread throughout the entire Pacific Ocean. Here we detail the Tara Pacific workflow for multi-omics data generation, from sample handling to nucleotide sequence data generation and deposition. This unique multidimensional framework also includes a large amount of concomitant metadata collected side-by-side that provide new assessments of coral reef biodiversity including micro-biodiversity and shape future investigations of coral reef dynamics and their fate in the Anthropocene.


Assuntos
Antozoários , Recifes de Corais , Animais , Biodiversidade , Ecossistema
14.
Commun Biol ; 6(1): 566, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264063

RESUMO

Endogenous viral elements (EVEs) offer insight into the evolutionary histories and hosts of contemporary viruses. This study leveraged DNA metagenomics and genomics to detect and infer the host of a non-retroviral dinoflagellate-infecting +ssRNA virus (dinoRNAV) common in coral reefs. As part of the Tara Pacific Expedition, this study surveyed 269 newly sequenced cnidarians and their resident symbiotic dinoflagellates (Symbiodiniaceae), associated metabarcodes, and publicly available metagenomes, revealing 178 dinoRNAV EVEs, predominantly among hydrocoral-dinoflagellate metagenomes. Putative associations between Symbiodiniaceae and dinoRNAV EVEs were corroborated by the characterization of dinoRNAV-like sequences in 17 of 18 scaffold-scale and one chromosome-scale dinoflagellate genome assembly, flanked by characteristically cellular sequences and in proximity to retroelements, suggesting potential mechanisms of integration. EVEs were not detected in dinoflagellate-free (aposymbiotic) cnidarian genome assemblies, including stony corals, hydrocorals, jellyfish, or seawater. The pervasive nature of dinoRNAV EVEs within dinoflagellate genomes (especially Symbiodinium), as well as their inconsistent within-genome distribution and fragmented nature, suggest ancestral or recurrent integration of this virus with variable conservation. Broadly, these findings illustrate how +ssRNA viruses may obscure their genomes as members of nested symbioses, with implications for host evolution, exaptation, and immunity in the context of reef health and disease.


Assuntos
Antozoários , Dinoflagellida , Vírus de RNA , Animais , Dinoflagellida/genética , Genoma , Antozoários/genética , Vírus de RNA/genética , Recifes de Corais
15.
Genome Biol ; 24(1): 123, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264421

RESUMO

BACKGROUND: Over the last decade, several coral genomes have been sequenced allowing a better understanding of these symbiotic organisms threatened by climate change. Scleractinian corals are reef builders and are central to coral reef ecosystems, providing habitat to a great diversity of species. RESULTS: In the frame of the Tara Pacific expedition, we assemble two coral genomes, Porites lobata and Pocillopora cf. effusa, with vastly improved contiguity that allows us to study the functional organization of these genomes. We annotate their gene catalog and report a relatively higher gene number than that found in other public coral genome sequences, 43,000 and 32,000 genes, respectively. This finding is explained by a high number of tandemly duplicated genes, accounting for almost a third of the predicted genes. We show that these duplicated genes originate from multiple and distinct duplication events throughout the coral lineage. They contribute to the amplification of gene families, mostly related to the immune system and disease resistance, which we suggest to be functionally linked to coral host resilience. CONCLUSIONS: At large, we show the importance of duplicated genes to inform the biology of reef-building corals and provide novel avenues to understand and screen for differences in stress resilience.


Assuntos
Antozoários , Animais , Antozoários/genética , Ecossistema , Recifes de Corais
16.
NPJ Biodivers ; 2(1): 15, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39242808

RESUMO

Tropical coral reefs are among the most affected ecosystems by climate change and face increasing loss in the coming decades. Effective conservation strategies that maximize ecosystem resilience must be informed by the accurate characterization of extant genetic diversity and population structure together with an understanding of the adaptive potential of keystone species. Here we analyzed samples from the Tara Pacific Expedition (2016-2018) that completed an 18,000 km longitudinal transect of the Pacific Ocean sampling three widespread corals-Pocillopora meandrina, Porites lobata, and Millepora cf. platyphylla-across 33 sites from 11 islands. Using deep metagenomic sequencing of 269 colonies in conjunction with morphological analyses and climate variability data, we can show that despite a targeted sampling the transect encompasses multiple cryptic species. These species exhibit disparate biogeographic patterns and, most importantly, distinct evolutionary patterns in identical environmental regimes. Our findings demonstrate on a basin scale that evolutionary trajectories are species-specific and can only in part be predicted from the environment. This highlights that conservation strategies must integrate multi-species investigations to discern the distinct genomic footprints shaped by selection as well as the genetic potential for adaptive change.

17.
PLoS One ; 17(9): e0274183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36112595

RESUMO

Under most natural marine conditions, phytoplankton cells suspended in the water column are too distantly spaced for direct competition for resources (i.e., overlapping cell boundary layers) to be a routine occurrence. Accordingly, resource-based competitive exclusion should be rare. In contrast, contemporary ecosystem models typically predict an exclusion of larger phytoplankton size classes under low-nutrient conditions, an outcome interpreted as reflecting the competitive advantage of small cells having much higher nutrient 'affinities' than larger cells. Here, we develop mechanistically-focused expressions for steady-state, nutrient-limited phytoplankton growth that are consistent with the discrete, distantly-spaced cells of natural populations. These expressions, when encompassed in a phytoplankton-zooplankton model, yield sustained diversity across all size classes over the full range in nutrient concentrations observed in the ocean. In other words, our model does not exhibit resource-based competitive exclusion between size classes previously associated with size-dependent differences in nutrient 'affinities'.


Assuntos
Ecossistema , Fitoplâncton , Animais , Nutrientes , Água , Zooplâncton
18.
Sensors (Basel) ; 22(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36146125

RESUMO

Measurements of daytime radiometry in the ocean are necessary to constrain processes such as photosynthesis, photo-chemistry and radiative heating. Profiles of downwelling irradiance provide a means to compute the concentration of a variety of in-water constituents. However, radiometers record a non-negligible signal when no light is available, and this signal is temperature dependent (called the dark current). Here, we devise and evaluate two consistent methods for correction of BGC-Argo radiometry measurements for dark current: one based on measurements during the day, the other based on night measurements. A daytime data correction is needed because some floats never measure at night. The corrections are based on modeling the temperature of the radiometer and show an average bias in the measured value of nearly 0.01 W m-2 nm-1, 3 orders of magnitude larger than the reported uncertainty of 2.5×10-5 W m-2 nm-1 for the sensors deployed on BGC-Argo floats (SeaBird scientific OCR504 radiometers). The methods are designed to be simple and robust, requiring pressure, temperature and irradiance data. The correction based on nighttime profiles is recommended as the primary method as it captures dark measurements with the largest dynamic range of temperature. Surprisingly, more than 28% of daytime profiles (130,674 in total) were found to record significant downwelling irradiance at 240-250 dbar. The correction is shown to be small relative to near-surface radiance and thus most useful for studies investigating light fields in the twilight zone and the impacts of radiance on deep organisms. Based on these findings, we recommend that BGC-Argo floats profile occasionally at night and to depths greater than 250 dbar. We provide codes to perform the dark corrections.

19.
Sci Total Environ ; 838(Pt 1): 155958, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35580673

RESUMO

The Mediterranean Sea is recognized as one of the most polluted areas by floating plastics. During the Tara Mediterranean expedition, an extensive sampling of plastic debris was conducted in seven ecoregions, from Gibraltar to Lebanon with the aim of providing reliable estimates of regional differences in floating plastic loads and plastic characteristics. The abundance, size, surface, circularity and mass of 75,030 pieces were analyzed and classified in a standardized multi-parameter database. Their average abundance was 2.60 × 105 items km-2 (2.25 × 103 to 8.50 × 106 km-2) resulting in an estimate of about 650 billion plastic particles floating on the surface of the Mediterranean. This corresponds to an average of 660 metric tons of plastic, at the lower end of literature estimates. High concentrations of plastic were observed in the northwestern coastal regions, north of the Tyrrhenian Sea, but also off the western and central Mediterranean basins. The Levantine basin south of Cyprus had the lowest concentrations. A Lagrangian Plastic Pollution Index (LPPI) predicting the concentration of plastic debris was validated using the spatial resolution of the data. The advanced state of plastic degradation detected in the analyses led to the conclusion that stranding/fragmentation/resuspension is the key process in the dynamics of floating plastic in Mediterranean surface waters. This is supported by the significant correlation between pollution sources and areas of high plastic concentration obtained by the LPPI.


Assuntos
Plásticos , Resíduos , Monitoramento Ambiental , Poluição Ambiental/análise , Mar Mediterrâneo , Resíduos/análise
20.
Science ; 376(6589): 156-162, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35389782

RESUMO

Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding. "Species"-rank abundance determination revealed that viruses of the new phyla "Taraviricota," a missing link in early RNA virus evolution, and "Arctiviricota" are widespread and dominant in the oceans. These efforts provide foundational knowledge critical to integrating RNA viruses into ecological and epidemiological models.


Assuntos
Genoma Viral , Vírus de RNA , Vírus , Evolução Biológica , Ecossistema , Oceanos e Mares , Filogenia , RNA , Vírus de RNA/genética , Viroma/genética , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA