RESUMO
BACKGROUND: Actinomyces turicensis is rarely responsible of clinically relevant infections in human. Infection is often misdiagnosed as malignancy, tuberculosis, or nocardiosis, therefore delaying the correct identification and treatment. Here we report a case of a 55-year-old immunocompetent adult with brain abscess caused by A. turicensis. A systematic review of A. turicensis infections was performed. METHODS: A systematic review of the literature was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The databases MEDLINE, Embase, Web of Science, CINAHL, Clinicaltrials.gov and Canadian Agency for Drugs and Technology in Health (CADTH) were searched for all relevant literature. RESULTS: Search identified 47 eligible records, for a total of 67 patients. A. turicensis infection was most frequently reported in the anogenital area (n = 21), causing acute bacterial skin and skin structure infections (ABSSSI) including Fournier's gangrene (n = 12), pulmonary infections (n = 8), gynecological infections (n = 6), cervicofacial district infections (n = 5), intrabdominal or breast infections (n = 8), urinary tract infections (n = 3), vertebral column infections (n = 2) central nervous system infections (n = 2), endocarditis (n = 1). Infections were mostly presenting as abscesses (n = 36), with or without concomitant bacteremia (n = 7). Fever and local signs of inflammation were present in over 60% of the cases. Treatment usually involved surgical drainage followed by antibiotic therapy (n = 51). Antimicrobial treatments most frequently included amoxicillin (+clavulanate), ampicillin/sulbactam, metronidazole or cephalosporins. Eighty-nine percent of the patients underwent a full recovery. Two fatal cases were reported. CONCLUSIONS: To the best of our knowledge, we hereby present the first case of a brain abscess caused by A. turicensis and P. mirabilis. Brain involvement by A. turicensis is rare and may result from hematogenous spread or by dissemination of a contiguous infection. The infection might be difficult to diagnose and therefore treatment may be delayed. Nevertheless, the pathogen is often readily treatable. Diagnosis of actinomycosis is challenging and requires prompt microbiological identification. Surgical excision and drainage and antibiotic treatment usually allow for full recovery.
Assuntos
Actinomicose , Abscesso Encefálico , Adulto , Humanos , Pessoa de Meia-Idade , Actinomyces , Actinomicose/diagnóstico , Actinomicose/tratamento farmacológico , Antibacterianos/uso terapêutico , Abscesso Encefálico/diagnóstico , Abscesso Encefálico/tratamento farmacológico , CanadáRESUMO
Histoplasmosis is a globally distributed systemic infection caused by the dimorphic fungus Histoplasma capsulatum (H. capsulatum). This fungus can cause a wide spectrum of clinical manifestations, and the diagnosis of progressive disseminated histoplasmosis is often a challenge for clinicians. Although microscopy and culture remain the gold standard diagnostic tests for Histoplasma identification, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) has emerged as a method of microbial identification suitable for the confirmation of dimorphic fungi. However, to our knowledge, there are no entries for H. capsulatum spectra in most commercial databases. In this review, we describe the case of disseminated histoplasmosis in a patient living with HIV admitted to our university hospital that we failed to identify by the MALDI-TOF method due to the limited reference spectrum of the instrument database. Furthermore, we highlight the utility of molecular approaches, such as conventional polymerase chain reaction (PCR) and DNA sequencing, as alternative confirmatory tests to MALDI-TOF technology for identifying H. capsulatum from positive cultures. An overview of current evidence and limitations of MALDI-TOF-based characterization of H. capsulatum is also presented.
RESUMO
BACKGROUND: Laboratory Automation (LA) is an innovative technology that is currently available for microbiology laboratories. LA can be a game changer by revolutionizing laboratory workflows through efficiency improvement and is also effective in the organization and standardization of procedures, enabling staff requalification. It can provide an important return on investment (time spent redefining the workflow as well as direct costs of instrumentation) in the medium to long term. METHODS: Here, we present our experience with the WASPLab® system introduced in our lab during the COVID-19 pandemic. We evaluated the impact due to the system by comparing the TAT recorded on our samples before, during, and after LA introduction (from 2019 to 2021). We focused our attention on blood cultures (BCs) and biological fluid samples (BLs). RESULTS: TAT recorded over time showed a significant decrease: from 97 h to 53.5 h (Δ43.5 h) for BCs and from 73 h to 58 h (Δ20 h) for BLs. Despite the introduction of the WASPLab® system, we have not been able to reduce the number of technical personnel units dedicated to the microbiology lab, but WASPLab® has allowed us to direct some of the staff resources toward other laboratory activities, including those required by the pandemic. CONCLUSIONS: LA can significantly enhance laboratory performance and, due to the significant reduction in reporting time, can have an effective impact on clinical choices and therefore on patient outcomes. Therefore, the initial costs of LA adoption must be considered worthwhile.
RESUMO
Several Klebsiella pneumoniae carpabenemase (KPC) gene mutations are associated with ceftazidime/avibactam (CAZ-AVI) resistance. Here, we describe four Klebsiella pneumoniae subsp. pneumoniae CAZ-AVI-resistant clinical isolates, collected at the University Hospital of Tor Vergata, Rome, Italy, from July 2019 to February 2020. These resistant strains were characterized as KPC-3, having the transition from cytosine to thymine (CAC-TAC) at nucleotide position 814, with histidine that replaces tyrosine (H272Y). In addition, two different types of KPC gene mutations were detected. The first one, common to three strains, was the D179Y (G532T), associated with CAZ-AVI resistance. The second mutation, found only in one strain, is a new mutation of the KPC-3 gene: a transversion from thymine to adenine (CTG-CAG) at nucleotide position 553. This mutation causes a KPC variant in which glutamine replaces leucine (Q168L). None of the isolates were detected by a rapid immunochromatographic assay for detection of carbapenemase (NG Biotech, Guipry, France) and were unable to grow on a selective chromogenic medium Carba SMART (bioMerieux, Firenze, Italy). Thus, they escaped common tests used for the prompt detection of Klebsiella pneumoniae KPC-producing.
RESUMO
Rapid diagnostic tests are tools of paramount impact both for improving patient care and in antimicrobial management programs. Particularly in the case of respiratory infections, it is of great importance to quickly confirm/exclude the involvement of pathogens, be they bacteria or viruses, while obtaining information about the presence/absence of a genetic target of resistance to modulate antibiotic therapy. In this paper, we present our experiences with the use of the Biofire® FilmArray® Pneumonia Panel Plus (FAPP; bioMérieux; Marcy l'Etoile, France) to assess coinfection in COVID-19 patients. A total of 152 respiratory samples from consecutive patients were examined, and 93 (61%) were found to be FAPP positive, with the detection of bacteria and/or viruses. The patients were 93 males and 59 females with an average age of 65 years who were admitted to our hospital due to moderate/severe acute respiratory symptoms. Among the positive samples were 52 from sputum (SPU) and 41 from bronchoalveolar lavage (BAL). The most representative species was S. aureus (most isolates were mecA positive; 30/44, 62%), followed by gram-negative pathogens such as P. aeruginosa, K. pneumoniae, and A. baumannii. Evidence of a virus was rare. Cultures performed from BAL and SPU samples gave poor results. Most of the discrepant negative cultures were those in which FAPP detected pathogens with a microbial count ≤ 105 CFU/mL. H. influenzae was one of the most common pathogens lost by the conventional method. Despite the potential limitations of FAPP, which detects a defined number of pathogens, its advantages of rapid detection combined with predictive information regarding the antimicrobial resistance of pathogens through the detection of some relevant markers of resistance could be very useful for establishing empirical targeted therapy for the treatment of patients with respiratory failure. In the COVID era, we understand the importance of using antibiotics wisely to curb the phenomenon of antibiotic resistance.
Assuntos
COVID-19/complicações , Coinfecção , Testes Diagnósticos de Rotina , Infecções Respiratórias/complicações , Infecções Respiratórias/diagnóstico , Idoso , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase Multiplex/métodos , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologiaRESUMO
Rapid pathogen identification (ID) and antimicrobial susceptibility testing (AST) in bacteremia cases or sepsis could improve patient prognosis. Thus, it is important to provide timely reports, which make it possible for clinicians to set up appropriate antibiotic therapy during the early stages of bloodstream infection (BSI). This study evaluates an in-house microbiological protocol for early ID as well as AST on Gram negative bacteria directly from positive monomicrobial and polymicrobial blood cultures (BCs). A total of 102 non-duplicated positive BCs from patients with Gram-negative bacteremia were tested. Both IDs and ASTs were performed from bacterial pellets extracted directly from BCs using our protocol, which was applied through the combined use of a MALDI-TOF MS and Vitek2 automated system. The results of our study showed a 100% agreement in bacterial ID and 98.25% categorical agreement in AST when compared to those obtained by routine conventional methods. We recorded only a 0.76% minor error (mE), 0.76% major error (ME) and a 0.20% very major error (VME). Moreover, the turnaround time (TAT) regarding the final AST report was significantly shortened (ΔTATâ¯=â¯8-20â¯h, pâ¯<â¯0.00001). This in-house protocol is rapid, easy to perform and cost effective and could be successfully introduced into any clinical microbiology laboratory. A final same-day report of ID and AST improves patient management, by early and appropriate antimicrobial treatment and could potentially optimize antimicrobial stewardship programs.
Assuntos
Bacteriemia/microbiologia , Técnicas Bacteriológicas/métodos , Hemocultura/métodos , Análise Custo-Benefício , Bactérias Gram-Negativas/isolamento & purificação , Testes de Sensibilidade Microbiana/métodos , Antibacterianos/farmacologia , Técnicas de Tipagem Bacteriana/instrumentação , Técnicas de Tipagem Bacteriana/métodos , Técnicas Bacteriológicas/instrumentação , Testes Diagnósticos de Rotina/métodos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/patogenicidade , Humanos , Testes de Sensibilidade Microbiana/instrumentação , Sepse/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fatores de TempoRESUMO
BACKGROUND: Coagulase-negative staphylococci (CoNS) are a major cause of nosocomial blood stream infection, especially in critically ill and haematology patients. CoNS are usually multidrug-resistant and glycopeptide antibiotics have been to date considered the drugs of choice for treatment. The aim of this study was to characterize CoNS with reduced susceptibility to glycopeptides causing blood stream infection (BSI) in critically ill and haematology patients at the University Hospital Tor Vergata, Rome, Italy, in 2007. METHODS: Hospital microbiology records for transplant haematology and ICU were reviewed to identify CoNS with elevated MICs for glycopeptides, and isolates were matched to clinical records to determine whether the isolates caused a BSI. The isolates were tested for susceptibility to new drugs daptomicin and tigecycline and the genetic relationship was assessed using f-AFLP. RESULTS: Of a total of 17,418 blood cultures, 1,609 were positive for CoNS and of these, 87 (5.4%) displayed reduced susceptibility to glycopeptides. Clinical review revealed that in 13 cases (7 in haematology and 6 in ICU), CoNS with reduced susceptibility to glycopeptides were responsible for a BSI. Staphylococcus epidermidis was the causative organism in 11 instances and Staphylococcus haemolyticus in 2. The incidence of oxacillin resistance was high (77%), although all isolates remained susceptible to linezolid, daptomycin and tigecycline. Fingerprinting of CoNS identified one clonal relationship between two isolates. CONCLUSION: Multi-resistant CoNS with reduced susceptibility to glycopeptides, although still relatively infrequent in our hospital, are emerging pathogens of clinical concern. Surveillance by antibiotyping with attention to multi-resistant profile, and warning to clinicians, is necessary.
Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Glicopeptídeos/uso terapêutico , Infecções Estafilocócicas/sangue , Staphylococcus epidermidis/genética , Staphylococcus haemolyticus/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Antibacterianos/uso terapêutico , Técnicas de Tipagem Bacteriana , Humanos , Pessoa de Meia-Idade , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus epidermidis/classificação , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus haemolyticus/classificação , Staphylococcus haemolyticus/efeitos dos fármacosRESUMO
BACKGROUND: The nosocomial infections surveillance system must be strongly effective especially in highly critic areas, such as Intensive Care Units (ICU). These areas are frequently an epidemiological epicentre for transmission of multi-resistant pathogens, like Acinetobacter baumannii. As an epidemic outbreak occurs it is very important to confirm or exclude the genetic relationship among the isolates in a short time. There are several molecular typing systems used with this aim. The Repetitive sequence-based PCR (REP-PCR) has been recognized as an effective method and it was recently adapted to an automated format known as the DiversiLab system. METHODS: In the present study we have evaluated the combination of a newly introduced software package for the control of hospital infection (VIGI@ct) with the DiversiLab system. In order to evaluate the reliability of the DiversiLab its results were also compared with those obtained using f-AFLP. RESULTS: The combination of VIGI@ct and DiversiLab enabled an earlier identification of an A. baumannii epidemic cluster, through the confirmation of the genetic relationship among the isolates. This cluster regards 56 multi-drug-resistant A. baumannii isolates from several specimens collected from 13 different patients admitted to the ICU in a ten month period. The A. baumannii isolates were clonally related being their similarity included between 97 and 100%. The results of the DiversiLab were confirmed by f-AFLP analysis. CONCLUSION: The early identification of the outbreak has led to the prompt application of operative procedures and precautions to avoid the spread of pathogen. To date, 6 months after the last A. baumannii isolate, no other related case has been identified.