Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cureus ; 16(2): e55070, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38550495

RESUMO

Objectives In this study, we outline our rationale for delivering a dose of ≥15 Gy in stereotactic radiosurgery (SRS) of glomus jugulare tumor (GJT) while ensuring the avoidance of complications associated with doses >13 Gy to the facial nerve. To avoid such complications, we initially utilized the Gamma Knife Perfexion (GK) system (Elekta Instrument AB, Stockholm, Sweden) at our institution but encountered challenges related to lengthy treatment times and difficulty in sculpting doses to minimize doses to spare the facial nerve. As a potential solution, we propose the use of HyperArc (Varian Medical Systems, Palo Alto, CA), a newly developed automated delivery platform for linear accelerator (LINAC)-based SRS. HyperArc offers the potential for faster treatment and more complex shaping of the radiotherapy dose with multiple arcs and multi-leaf collimators. Methods We retrospectively reviewed nine cases of patients with GJT treated with HyperArc. Patients' demographic and treatment data were collected. Additionally, simulated GK treatment plans were created and compared with HyperArc plans to assess time savings, PTV coverage, and plan quality. Results One male and eight female patients, with a mean age of 63.9 years, were included. Treatments were delivered on average in 29 minutes, achieving 95-100% of the tumor while limiting the facial nerve to <13 Gy. Treatments replanned using our GK system could achieve only 92-99% tumor coverage while respecting facial nerve constraints, with average treatment times of 180 minutes. Comparable plan quality parameters were attained with both modalities. Conclusions The HyperArc system provides a qualitatively satisfactory and rapid treatment delivery of a highly sculpted radiotherapy dose to maximize tumor coverage and minimize facial nerve complications.

2.
J Appl Clin Med Phys ; 25(2): e14168, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798910

RESUMO

PURPOSE: Knowledge-based planning (KBP) aims to automate and standardize treatment planning. New KBP users are faced with many questions: How much does model size matter, and are multiple models needed to accommodate specific physician preferences? In this study, six head-and-neck KBP models were trained to address these questions. METHODS: The six models differed in training size and plan composition: The KBPFull (n = 203 plans), KBP101 (n = 101), KBP50 (n = 50), and KBP25 (n = 25) were trained with plans from two head-and-neck physicians. KBPA and KBPB each contained n = 101 plans from only one physician, respectively. An independent set of 39 patients treated to 6000-7000 cGy by a third physician was re-planned with all KBP models for validation. Standard head-and-neck dosimetric parameters were used to compare resulting plans. KBPFull plans were compared to the clinical plans to evaluate overall model quality. Additionally, clinical and KBPFull plans were presented to another physician for blind review. Dosimetric comparison of KBPFull against KBP101 , KBP50 , and KBP25 investigated the effect of model size. Finally, KBPA versus KBPB tested whether training KBP models on plans from one physician only influences the resulting output. Dosimetric differences were tested for significance using a paired t-test (p < 0.05). RESULTS: Compared to manual plans, KBPFull significantly increased PTV Low D95% and left parotid mean dose but decreased dose cochlea, constrictors, and larynx. The physician preferred the KBPFull plan over the manual plan in 20/39 cases. Dosimetric differences between KBPFull , KBP101 , KBP50 , and KBP25 plans did not exceed 187 cGy on aggregate, except for the cochlea. Further, average differences between KBPA and KBPB were below 110 cGy. CONCLUSIONS: Overall, all models were shown to produce high-quality plans. Differences between model outputs were small compared to the prescription. This indicates only small improvements when increasing model size and minimal influence of the physician when choosing treatment plans for training head-and-neck KBP models.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Bases de Conhecimento , Radiometria , Órgãos em Risco
3.
Phys Med ; 112: 102644, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487297

RESUMO

PURPOSE: Extending salvage radiotherapy to treat the pelvic lymph nodes (PLNRT) improves oncologic outcomes in prostate cancer (PCa). However, a larger treatment volume increases the extent of bone marrow (BM) exposure, which is associated with hematologic toxicity (HT). Given the potential long-term impact of BM dose in PCa, clinical studies on BM sparing (BMS) are warranted. Herein, we dosimetrically compared photon and proton plans for BMS. MATERIALS AND METHODS: Treatment plans of 20 post-operative PCa patients treated with volumetric-modulated arc photon therapy (VMAT) PLNRT were retrospectively identified. Contours were added for the whole pelvis BM (WPBM) and BM sub-volumes: lumbar-sacral (LSBM), iliac (ILBM), and lower pelvis (LPBM). Three additional plans were created: VMAT_BMS, intensity-modulated proton therapy (IMPT), and IMPT_BMS. Normal tissue complication probabilities (NTCP) for grade >3 hematologic toxicity (HT3+) were calculated for the WPBM volumes. RESULTS: Compared to the original VMAT plan, mean doses to all BM sub-volumes were statistically significantly lower for VMAT_BMS, IMPT, and IMPT_BMS resulting in average NTCP percentages of 20.5 ± 5.9, 10.7 ± 4.2, 6.1 ± 2.0, and 2.5 ± 0.6, respectively. IMPT_BMS had significantly lower low dose metrics (V300cGy-V2000cGy) for WPBM and sub-volumes except for LPBM V2000cGy compared to VMAT_BMS and ILBM V20Gy compared to IMPT. In most cases, V4000cGy and V5000cGy within ILBM and LSBM were significantly higher for IMPT plans compared to VMAT plans. CONCLUSIONS: BMS plans are achievable with VMAT and IMPT without compromising target coverage or OARs constraints. IMPT plans were overall better at reducing mean and NTCP for HT3+ as well as low dose volumes to BM. However, IMPT had larger high dose volumes within LSBM and ILBM. Further studies are warranted to evaluate the clinical implications of these findings.


Assuntos
Neoplasias da Próstata , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Masculino , Medula Óssea , Linfonodos , Órgãos em Risco , Pelve , Neoplasias da Próstata/radioterapia , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
4.
Phys Med ; 92: 69-74, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34871889

RESUMO

PURPOSE/OBJECTIVE: To evaluate intra-fraction target shift during automated mono-isocentric linac-based stereotactic radiosurgery with open-face mask system and optical real-time tracking. MATERIALS/METHODS: Ninety-five patients were treated using automated linac-based stereotactic radiosurgery in 1-5 fractions with single isocenter for a total of 195 fractions. During treatment, patient positioning was tracked real-time with optical surface guidance and immobilized with a rigid open-face mask. Patients were re-positioned if optical surface guidance error exceeded 1 mm magnitude or 1°. Translational and rotational intra-fractional changes were determined by post-treatment CBCT matched to the planning CT. Target specific error was calculated by translation and rotation matrices applied to isocenter and target spatial coordinates. RESULTS: For 132 fractions with isocenter within a single target, the median shift magnitude was 0.40 mm with a maximum shift of 1.17 mm. A total of 398 targets treated for plans having multiple or single targets that lied outside isocenter, resulted in a median shift magnitude of 0.46 mm, with median translational shifts of 0.20 mm and 0.20° rotational shifts. A 1 mm PTV margin was insufficient in 18% of targets at a distance greater than 6 cm away from isocenter, but sufficient for 96% of targets within 6 cm. CONCLUSIONS: The findings of this study support 1 mm PTV expansion due to intra-fraction motion to ensure target coverage for plans with isocenter placement less than 6 cm away from the targets.

5.
Front Oncol ; 11: 737901, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737954

RESUMO

PURPOSE: To assess the performance of a proton-specific knowledge-based planning (KBP) model in the creation of robustly optimized intensity-modulated proton therapy (IMPT) plans for treatment of advanced head and neck (HN) cancer patients. METHODS: Seventy-three patients diagnosed with advanced HN cancer previously treated with volumetric modulated arc therapy (VMAT) were selected and replanned with robustly optimized IMPT. A proton-specific KBP model, RapidPlanPT (RPP), was generated using 53 patients (20 unilateral cases and 33 bilateral cases). The remaining 20 patients (10 unilateral and 10 bilateral cases) were used for model validation. The model was validated by comparing the target coverage and organ at risk (OAR) sparing in the RPP-generated IMPT plans with those in the expert plans. To account for the robustness of the plan, all uncertainty scenarios were included in the analysis. RESULTS: All the RPP plans generated were clinically acceptable. For unilateral cases, RPP plans had higher CTV_primary V100 (1.59% ± 1.24%) but higher homogeneity index (HI) (0.7 ± 0.73) than had the expert plans. In addition, the RPP plans had better ipsilateral cochlea Dmean (-5.76 ± 6.11 Gy), with marginal to no significant difference between RPP plans and expert plans for all other OAR dosimetric indices. For the bilateral cases, the V100 for all clinical target volumes (CTVs) was higher for the RPP plans than for the expert plans, especially the CTV_primary V100 (5.08% ± 3.02%), with no significant difference in the HI. With respect to OAR sparing, RPP plans had a lower spinal cord Dmax (-5.74 ± 5.72 Gy), lower cochlea Dmean (left, -6.05 ± 4.33 Gy; right, -4.84 ± 4.66 Gy), lower left and right parotid V20Gy (left, -6.45% ± 5.32%; right, -6.92% ± 3.45%), and a lower integral dose (-0.19 ± 0.19 Gy). However, RPP plans increased the Dmax in the body outside of CTV (body-CTV) (1.2 ± 1.43 Gy), indicating a slightly higher hotspot produced by the RPP plans. CONCLUSION: IMPT plans generated by a broad-scope RPP model have a quality that is, at minimum, comparable with, and at times superior to, that of the expert plans. The RPP plans demonstrated a greater robustness for CTV coverage and better sparing for several OARs.

6.
Int J Part Ther ; 8(2): 62-72, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722812

RESUMO

PURPOSE: To assess the performance of a proton-specific knowledge based planning (KBPP) model in creation of robustly optimized intensity-modulated proton therapy (IMPT) plans for treatment of patients with prostate cancer. MATERIALS AND METHODS: Forty-five patients with localized prostate cancer, who had previously been treated with volumetric modulated arc therapy, were selected and replanned with robustly optimized IMPT. A KBPP model was generated from the results of 30 of the patients, and the remaining 15 patient results were used for validation. The KBPP model quality and accuracy were evaluated with the model-provided organ-at-risk regression plots and metrics. The KBPP quality was also assessed through comparison of expert and KBPP-generated IMPT plans for target coverage and organ-at-risk sparing. RESULTS: The resulting R 2 (mean ± SD, 0.87 ± 0.07) between dosimetric and geometric features, as well as the χ2 test (1.17 ± 0.07) between the original and estimated data, showed the model had good quality. All the KBPP plans were clinically acceptable. Compared with the expert plans, the KBPP plans had marginally higher dose-volume indices for the rectum V65Gy (0.8% ± 2.94%), but delivered a lower dose to the bladder (-1.06% ± 2.9% for bladder V65Gy). In addition, KBPP plans achieved lower hotspot (-0.67Gy ± 2.17Gy) and lower integral dose (-0.09Gy ± 0.3Gy) than the expert plans did. Moreover, the KBPP generated better plans that demonstrated slightly greater clinical target volume V95 (0.1% ± 0.68%) and lower homogeneity index (-1.13 ± 2.34). CONCLUSIONS: The results demonstrated that robustly optimized IMPT plans created by the KBPP model are of high quality and are comparable to expert plans. Furthermore, the KBPP model can generate more-robust and more-homogenous plans compared with those of expert plans. More studies need to be done for the validation of the proton KBPP model at more-complicated treatment sites.

7.
Brachytherapy ; 20(6): 1289-1295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34193361

RESUMO

PURPOSE: Tilting of the posterior plaque margin during eye plaque brachytherapy can lead to tumor underdosing and increased risk of local recurrence. We performed a quantitative analysis of the dosimetric effects of plaque tilt as a function of tumor position, basal dimension, height and plaque type using 3D treatment planning software. MATERIALS AND METHODS: Posterior and anterior tumors with largest basal dimensions of 6, 12 and 18 mm and heights of 4, 7 and 10 mm were modeled. Both Eye Physics and COMS plaques were simulated and uniformly loaded. Plans were normalized to 85 Gy at the tumor apex. Posterior plaque tilts of 1, 2, 3 and 4 mm were simulated. RESULTS: Volumetric coverage is more sensitive to tilt than the area coverage. Wide, flat tumors are more susceptible to tilt. Apical dose changed significantly as a function of tumor height and diameter. No other parameter exhibited significant differences. Posterior tumors are slightly more susceptible to tilt due to the use of notched plaques. Plaque type does not significantly alter the effect of plaque tilt. CONCLUSIONS: Wide, flat tumors are the most susceptible to plaque tilt. Tumor location or plaque type does not have a significant effect on dosimetry changes from plaque tilt. Robust clinical procedures such as the use of mattress sutures, pre- and post-implant ultrasound and post-implant dosimetry can all mitigate the risk associated with plaque tilt.


Assuntos
Braquiterapia , Neoplasias Oculares , Melanoma , Braquiterapia/métodos , Humanos , Radiometria , Dosagem Radioterapêutica
8.
Phys Med ; 81: 1-8, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33278764

RESUMO

BACKGROUND: Newer technology for stereotactic radiosurgery (SRS) should be assessed for different multi-leaf collimators (MLC). OBJECTIVE: Assess plan quality of an automated, frameless, linear accelerator based (linac) planning and delivery system (HyperArc) for SRS using both standard MLC (SMLC) and high definition MLC (HDMLC) compared to a cobalt-60 based SRS system (Gamma Knife, GK). METHODS: We re-planned twenty GK Perfexion-treated SRS patients (27 lesions) for HyperArc using SMLC and HDMLC. We assessed plan quality using the following metrics: gradient index (GI), Paddick and RTOG conformity indices (CIPaddick, CIRTOG), volume receiving half of prescription isodose (PIVhalf) and maximum dose to 0.03 cc for brainstem, optic chiasm and optic nerves, and V12Gy for brain-GTV. RESULTS: Linac plans had better conformity with HDMLC being most conformal. GK exhibited better GI. PIVhalf demonstrated no statistically significant difference between HDMLC and GK, and SMLC was nominally worse than GK. Mean PIVhalf was generally 0.85 cc larger for SMLC than HDMLC. For TV > 1.0 cc, the relative differences in CIRTOG, GI, and PIVhalf for SMLC vs. HDMLC were less than 21%. For TV less than < 1.0 cc, there were more obvious relative differences for SMLC vs. HDMLC in CIRTOG (mean 146%, max 700%), GI (mean 49%, max 162%), and PIVhalf (mean 77%, max 522%). Organ at risk doses were met in all plans. CONCLUSIONS: New linac-based plans positively compare to GK plans overall. HDMLC should be strongly considered for treatment of lesions < 1.0 cc given the significant improvements in conformity and PIVhalf over SMLC.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Radioterapia de Intensidade Modulada , Encéfalo , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Humanos , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Base do Crânio
9.
Phys Med ; 77: 54-63, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32781388

RESUMO

PURPOSE/OBJECTIVE: Online Adaptive Radiotherapy (ART) with daily MR-imaging has the potential to improve dosimetric accuracy by accounting for inter-fractional anatomical changes. This study provides an assessment for the feasibility and potential benefits of online adaptive MRI-Guided Stereotactic Body Radiotherapy (SBRT) for treatment of liver cancer. MATERIALS/METHODS: Ten patients with liver cancer treated with MR-Guided SBRT were included. Prescription doses ranged between 27 and 50 Gy in 3-5 fx. All SBRT fractions employed daily MR-guided setup while utilizing cine-MR gating. Organs-at-risk (OARs) included duodenum, bowel, stomach, kidneys and spinal cord. Daily MRIs and contours were utilized to create each adapted plan. Adapted plans used the beam-parameters and optimization-objectives from the initial plan. Planning target volume (PTV) coverage and OAR constraints were used to compare non-adaptive and adaptive plans. RESULTS: PTV coverage for non-adapted treatment plans was below the prescribed coverage for 32/47 fractions (68%), with 11 fractions failing by more than 10%. All 47 adapted fractions met prescribed coverage. OAR constraint violations were also compared for several organs. The duodenum exceeded tolerance for 5/23 non-adapted and 0/23 for adapted fractions. The bowel exceeded tolerance for 5/34 non-adaptive and 1/34 adaptive fractions. The stomach exceeded tolerance for 4/19 non-adapted and 1/19 for adaptive fractions. Accumulated dose volume histograms were also generated for each patient. CONCLUSION: Online adaptive MR-Guided SBRT of liver cancer using daily re-optimization resulted in better target conformality, coverage and OAR sparing compared with non-adaptive SBRT. Daily adaptive planning may allow for PTV dose escalation without compromising OAR sparing.


Assuntos
Neoplasias Hepáticas , Radiocirurgia , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Imageamento por Ressonância Magnética , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
10.
Int J Radiat Oncol Biol Phys ; 107(2): 305-315, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32084522

RESUMO

PURPOSE: A phase I clinical trial was designed to test the feasibility and toxicity of administering high-dose spatially fractionated radiation therapy to magnetic resonance imaging (MRI)-defined prostate tumor volumes, in addition to standard treatment. METHODS AND MATERIALS: We enrolled 25 men with favorable to high-risk prostate cancer and 1 to 3 suspicious multiparametric MRI (mpMRI) gross tumor volumes (GTVs). The mpMRI-GTVs were treated on day 1 with 12 to 14 Gy via dose cylinders using a lattice extreme ablative dose technique. The entire prostate, along with the proximal seminal vesicles, was then treated to 76 Gy at 2 Gy/fraction. For some high-risk patients, the distal seminal vesicles and pelvic lymph nodes received 56 Gy at 1.47 Gy/fraction concurrently in 38 fractions. The total dose to the lattice extreme ablative dose cylinder volume(s) was 88 to 90 Gy (112-123 Gy in 2.0 Gy equivalents, assuming an α-to-ß ratio of 3). RESULTS: Dosimetric parameters were satisfactorily met. Median follow-up was 66 months. There were no grade 3 acute/subacute genitourinary or gastrointestinal adverse events. Maximum late genitourinary toxicity was grade 1 in 15 (60%), grade 2 in 4 (16%), and grade 4 in 1 (4%; sepsis after a posttreatment transurethral resection). Maximum late gastrointestinal toxicity was grade 1 in 11 (44%) and grade 2 in 4 (16%). Two patients experienced biochemical failure. CONCLUSIONS: External beam radiation therapy delivered with an upfront spatially fractionated, stereotactic high-dose mpMRI-GTV boost is feasible and was not associated with any unexpected events. The technique is now part of a follow-up phase II randomized trial.


Assuntos
Técnicas de Ablação , Imageamento por Ressonância Magnética , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radioterapia Guiada por Imagem , Técnicas de Ablação/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Viabilidade , Humanos , Masculino , Pessoa de Meia-Idade , Radioterapia Guiada por Imagem/efeitos adversos , Segurança , Glândulas Seminais/efeitos da radiação , Tomografia Computadorizada por Raios X
11.
Data Brief ; 22: 620-626, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30671508

RESUMO

The tables included in this article will allow the user to implement shot within shot optimization for Gamma Knife radiosurgery planning and delivery. The method is intended to reduce treatment time when treating small to medium sized brain metastasis. The tables were previously developed by extracting profiles from Gamma Plan for three collimator settings and modeling their behavior when combined or prescribed at different isodose lines. For a given target size, the tables represent the optimal selection of shot weighting and prescription isodose line to reduce beam on time while maintaining an acceptable dose gradient. The method was recently validated in a large patient cohort and the data is this study is related to the research article titled "Clinical evaluation of shot within shot optimization for Gamma Knife radiosurgery planning and delivery" (Johnson et al., in press).

12.
World Neurosurg ; 123: e218-e227, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30481630

RESUMO

OBJECTIVE: Shot-within-shot (SWS) optimization is a new planning technique that relies on various combinations of shot weighting and prescription isodose line (IDL) to reduce beam-on time. The method differs from other planning techniques that incorporate mixed collimation, multiple stereotactic coordinates, and traditionally low prescription IDLs (<60%). In this work, we evaluate the percentage of brain metastasis for which the method can be applied, the magnitude of the resultant time savings, and the possible tradeoffs in plan quality. METHODS: A retrospective analysis was performed on 75 patients treated for 241 metastatic lesions in the brain. For each lesion, the original planning metrics related to target coverage, conformity, gradient, and beam-on time were recorded. A subset of lesions were selected for replanning using the SWS technique based on size, shape, and proximity to critical structures. Two replans were done, a reference plan was prescribed at the 50% IDL, and an optimized plan was prescribed at an IDL typically >50%. Planning metrics were then compared among the original plan and the 2 replans. RESULTS: More than a third (39%) of the brain metastases were eligible for the SWS technique. For these lesions, the differences between the original plan and reference SWS plan were as follows: ΔV12Gy < 0.5 cc in 93% of cases, ΔV12Gy < 0.5 cc in 100% of cases, Δselectivity < 0.1 in 79% of cases. Negligible differences were seen between the 2 replans in terms of Δselectivity and ΔV12Gy; ΔGI < 5% in 99% of cases. After optimization, beam-on time was reduced by 25%-30% in approximately 40%-50% of eligible lesions when compared with the reference SWS plan (ΔTmax = 42%). In comparison with the original plan, beam-on time was reduced even further, ΔT > 50% in 20% of cases (ΔTmax = 70%). CONCLUSIONS: This work demonstrates clinically that optimization using the shot-within-shot technique can reduce beam-on time without degrading treatment plan quality.


Assuntos
Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Humanos , Dosagem Radioterapêutica , Estudos Retrospectivos
13.
J Appl Clin Med Phys ; 19(6): 209-216, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30338911

RESUMO

Knowledge-based planning (KBP) can be used to improve plan quality, planning speed, and reduce the inter-patient plan variability. KPB may also identify and reduce systematic variations in VMAT plans, something very important in multi-institutional clinical trials. Training of a KBP library is a complex and difficult process, and models must be validated prior to their clinical use. The purpose of this work is to assess the quality of the treatment plans generated using a specific versus combined purpose model KBP library for prostate cancer. Seven KBP model libraries were created from a set of patients treated on various Institutional Review Board (IRB) approved protocols. All KBP libraries were validated using an independent set of twenty patients (half treated Pr: Prostate alone half treated PLN: prostate plus pelvic lymph nodes). Two models were tested on the Pr patients only, four tested on PLN patients only, and one tested on all patients. All plans were normalized such that at least 95% of the prostate planning target volume received 100% of the planned dose. The plans based on different model libraries were compared to each other and the expert clinical plan. For Pr plans there were almost no statistically significant differences (P < 0.008) between the plans types except conformity index (CI) with library plans better than the expert. For PLN plans, all model libraries in generally showed femur doses and CI better than the expert plans (P < 0.003). This study demonstrated that no large differences were observed between specific versus combined KBP model libraries in dosimetry of prostate cancer patients. This would allow for a fewer specific plans to be needed to create a model library. Further studies are needed to evaluate benefits of combined purpose model libraries for planning of complex sites such as head and neck cancer.


Assuntos
Bases de Conhecimento , Modelos Biológicos , Órgãos em Risco/efeitos da radiação , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Linfonodos/efeitos da radiação , Masculino , Pelve/efeitos da radiação , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
14.
J Appl Clin Med Phys ; 18(5): 89-96, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28857433

RESUMO

The major errors in HDR procedures were failures to enter the correct treatment distance, which could be caused by either entering wrong transmission lengths or imprecisely digitizing the dwelling positions. Most of those errors were not easily avoidable by enhancing the HDR management level because they were caused by implementations of nonstandardized applicators utilizing transmission tubes of different lengths in standard HDR procedures. We performed this comprehensive study to include all possible situations with different nonstandardized applicators that frequently occurred in HDR procedures, provide corresponding situations with standard applicator as comparisons, list all possible errors and in planning, clarify the confusions in offsets setting, and provide mathematical and quantitative solutions for each given scenarios. Training on HDR procedures with nonstandardized applicators are normally not included in most residential program for medical physics, thus this study could be meaningful in both clinical and educational purpose. At precision of 1 mm, our study could be used as the essential and practical reference for finding the correct treatment length as well as locating the accurate dwelling positions in any HDR procedure with nonstandardized applicators.


Assuntos
Braquiterapia/instrumentação , Erros Médicos , Braquiterapia/métodos , Humanos , Dosagem Radioterapêutica
15.
Technol Cancer Res Treat ; 16(6): 1014-1021, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28671024

RESUMO

BACKGROUND: Adaptive radiotherapy is being used in few institutions in patients with head and neck cancer having bulky disease using periodic computed tomography imaging accounting for volumetric changes in tumor volume and/or weight loss. Limited data are available on ART in the postoperative setting. We aim to identify parameters that would predict the need for ART in patients with head and neck cancer and whether ART should be applied in postoperative setting. MATERIALS AND METHODS: Twenty patients with stage III-IV head and neck cancer were prospectively accrued. A computed tomography simulation was done prior to treatment and repeated at weeks 3 and 6 of concurrent intensity-modulated radiotherapy and chemotherapy. The final plan was coregistered with the subsequent computed tomography images, and dosimetric/volumetric changes at weeks 1 (baseline), 3, and 6 were quantified in high-risk clinical target volumes, low-risk clinical target volumes , right parotid , left parotid , and spinal cord . An event to trigger ART was defined as spinal cord maximum dose >45 Gy, parotid mean dose >26 Gy, and clinical target volume coverage <95%. RESULTS: Comparing the 2 groups, the proportion of patients with at least 1 event triggering ART was higher in bulky disease than in postoperative group: 72.7% versus 18.2% (P = .03) overall; 54.6% versus 1.8% (P = .064) at week 3; and 63.6% versus 18.2% (P = .081) at week 6. In the bulky disease group, 8 of 11 patients had events at week 3 and/or 6 as follows: overdose in spinal cord (n = 2), right parotid (n = 3), left parotid (n = 5), coverage < 95% seen in low-risk clinical target volumes (n = 3), and high-risk clinical target volumes (n = 5). In the postoperative group, 2 of 11 patients had events: spinal cord (n = 1) and low-risk clinical target volume (n = 1). CONCLUSION: Our study confirmed the need for ART in patients with head and neck cancer having bulky disease due to target under dosing and/or spinal cord/parotids overdosing in weeks 3 and 6. In contrast, the benefit of ART in postoperative patients is less clear.

16.
J Appl Clin Med Phys ; 17(3): 304-312, 2016 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-27167286

RESUMO

Advances in magnetic resonance imaging (MRI) sequences allow physicians to define the dominant intraprostatic lesion (IPL) in prostate radiation therapy treat-ments allowing for dose escalation and potentially increased tumor control. This work quantifies the margin required around the MRI-defined IPL accounting for both prostate motion and deformation. Ten patients treated with a simultaneous integrated intraprostatic boost (SIIB) were retrospectively selected and replanned with incremental 1 mm margins from 0-5 mm around the IPL to determine if there were any significant differences in dosimetric parameters. Sensitivity analysis was then performed accounting for random and systematic uncertainties in both prostate motion and deformation to ensure adequate dose was delivered to the IPL. Prostate deformation was assessed using daily CBCT imaging and implanted fiducial markers. The average IPL volume without margin was 2.3% of the PTV volume and increased to 11.8% with a 5 mm margin. Despite these changes in vol-ume, the only statistically significant dosimetric difference was found for the PTV maximum dose, which increased with increasing margin. The sensitivity analysis demonstrated that a 3.0 mm margin ensures > 95% IPL coverage accounting for both motion and deformation. We found that a margin of 3.0 mm around the MRI defined IPL is sufficient to account for random and systematic errors in IPL posi-tion for the majority of cases.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias da Próstata/patologia , Radioterapia Guiada por Imagem/métodos , Fracionamento da Dose de Radiação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
17.
Int J Radiat Oncol Biol Phys ; 95(2): 827-34, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27020109

RESUMO

PURPOSE: To compare dosimetric characteristics with multiparametric magnetic resonance imaging-identified imaging tumor volume (gross tumor volume, GTV), prostate clinical target volume and planning target volume, and organs at risk (OARs) for 2 treatment techniques representing 2 arms of an institutional phase 3 randomized trial of hypofractionated external beam image guided highly targeted radiation therapy. METHODS AND MATERIALS: Group 1 (n=20) patients were treated before the trial inception with the standard dose prescription. Each patient had an additional treatment plan generated per the experimental arm. A total of 40 treatment plans were compared (20 plans for each technique). Group 2 (n=15) consists of patients currently accrued to the hypofractionated external beam image guided highly targeted radiation therapy trial. Plans were created as per the treatment arm, with additional plans for 5 of the group 2 experimental arm with a 3-mm expansion in the imaging GTV. RESULTS: For all plans in both patient groups, planning target volume coverage ranged from 95% to 100%; GTV coverage of 89.3 Gy for the experimental treatment plans ranged from 95.2% to 99.8%. For both groups 1 and 2, the percent volumes of rectum/anus and bladder receiving 40 Gy, 65 Gy, and 80 Gy were smaller in the experimental plans than in the standard plans. The percent volume at 1 Gy per fraction and 1.625 Gy per fraction were compared between the standard and the experimental arms, and these were found to be equivalent. CONCLUSIONS: The dose per fraction to the OARs can be made equal even when giving a large simultaneous integrated boost to the GTV. The data suggest that a GTV margin may be added without significant dose effects on the OARs.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Idoso , Idoso de 80 Anos ou mais , Estudos de Viabilidade , Humanos , Masculino , Pessoa de Meia-Idade , Órgãos em Risco , Neoplasias da Próstata/diagnóstico por imagem , Dosagem Radioterapêutica , Carga Tumoral
18.
Clin Lung Cancer ; 8(8): 488-92, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17922973

RESUMO

PURPOSE: The aims of this study were to determine if image-guided robotic stereotactic radiosurgery by CyberKnife Radiosurgery System using ablative radiation doses achieves acceptable local control in medically inoperable patients with early non-small-cell lung cancer (NSCLC) and to evaluate disease-free survival, toxicity, and failure. CyberKnife can deliver the prescribed dose by using many different angles converging on the target, with real-time target tracking through a combined orthogonal radiograph imaging and optic motion tracking system (Synchrony). MATERIALS AND METHODS: A review of treatment details and outcomes for 59 patients, ranging in age from 51 years to 96 years, with 61 tumors with histologically proven cancers treated by image-guided robotic stereotactic radiosurgery at the CyberKnife Center of Miami between March 2004 and March 2007 is presented. Target localization and respiratory movement compensation were accomplished using a single fiducial marker placed within the tumor, and the X-Sight and Synchrony systems. Total doses ranged from 15 Gy to 67.5 Gy delivered in 1-5 fractions with an equivalent dose range of 24-110 Gy normalized treatment dose in 2 Gy fractions (alpha/beta = 20 Gy). RESULTS: Four patients with stage 1A NSCLC and 2 patients with stage 1B NSCLC had persistent or recurrent disease. All patients tolerated the radiosurgery well, fatigue being the main side effect. Of the 59 patients treated, 51 (86%) were still alive at 1-33-month follow-up. Eight patients have died, 2 of diseases other than cancer progression. CONCLUSION: The results indicate that the delivery of precisely targeted ablative radiation doses with surgical precision to limited treatment volumes of lung tumors in a hypofractionated fashion is feasible and safe. Image-guided robotic stereotactic radiosurgery of lung tumors with CyberKnife(R) achieves excellent rates of local disease control with limited toxicity to surrounding tissues and, in many cases, might be curative for patients for whom surgery is not an option.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/cirurgia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/patologia , Intervalo Livre de Doença , Fracionamento da Dose de Radiação , Fadiga/etiologia , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Radiocirurgia/efeitos adversos , Dosagem Radioterapêutica , Estudos Retrospectivos , Robótica , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA