Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37568748

RESUMO

Wnt/ß-catenin signaling is critically required for the development and maintenance of leukemia stem cells (LSCs) in acute myeloid leukemia (AML) by constitutive activation of myeloid regeneration-related pathways. Cell-intrinsic activation of canonical Wnt signaling propagates in the nucleus by ß-catenin translocation, where it induces expression of target oncogenes such as JUN, MYC and CCND1. As the Wnt/ß-catenin pathway is now well established to be a key oncogenic signaling pathway promoting leukemic myelopoiesis, targeting it would be an effective strategy to impair LSC functionality. Although the effects of the adenosine analogue cordycepin in repressing ß-catenins and destabilizing the LSC niche have been highlighted, the cellular and molecular effects on AML-LSC have not been fully clarified. In the present study, we evaluated the potency and efficacy of cordycepin, a selective repressor of Wnt/ß-catenin signaling with anti-leukemia properties, on the AC133+ LSC fraction. Cordycepin effectively reduces cell viability of the AC133+ LSCs in the MUTZ-2 cell model and patient-derived cells through the induction of apoptosis. By Wnt-targeted RNA sequencing panel, we highlighted the re-expression of WIF1 and DKK1 among others, and the consequent downregulation of MYC and PROM1 (CD133) following MUTZ-2 cell exposure to increasing doses of cordycepin. Our results provide new insights into the molecular circuits involved in pharmacological inhibition mediated by cordycepin reinforcing the potential of targeting the Wnt/ß-catenin and co-regulatory complexes in AML.

2.
Medicina (Kaunas) ; 59(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37629695

RESUMO

Background and Objectives: This study aimed to investigate the causes of continuous deep fluctuations in the absolute lymphocyte count (ALC) in an untreated patient with Chronic Lymphocytic Leukemia (CLL), who has had a favorable prognosis since the time of diagnosis. Up until now, the patient has voluntarily chosen to adopt a predominantly vegetarian and fruitarian diet, along with prolonged periods of total fasting (ranging from 4 to 39 days) each year. Materials and Methods: For this purpose, we decided to analyze the whole transcriptome profiling of peripheral blood (PB) CD19+ cells from the patient (#1) at different time-points vs. the same cells of five other untreated CLL patients who followed a varied diet. Consequently, the CLL patients were categorized as follows: the 1st group comprised patient #1 at 20 different time-points (16 time-points during nutrition and 4 time-points during fasting), whereas the 2nd group included only one time point for each of the patients (#2, #3, #4, #5, and #6) as they followed a varied diet. We performed microarray experiments using a powerful tool, the Affymetrix Human Clariom™ D Pico Assay, to generate high-fidelity biomarker signatures. Statistical analysis was employed to identify differentially expressed genes and to perform sample clustering. Results: The lymphocytosis trend in patient #1 showed recurring fluctuations since the time of diagnosis. Interestingly, we observed that approximately 4-6 weeks after the conclusion of fasting periods, the absolute lymphocyte count was reduced by about half. The gene expression profiling analysis revealed that nine genes were statistically differently expressed between the 1st group and the 2nd group. Specifically, IGLC3, RPS26, CHPT1, and PCDH9 were under expressed in the 1st group compared to the 2nd group of CLL patients. Conversely, IGHV3-43, IGKV3D-20, PLEKHA1, CYBB, and GABRB2 were over-expressed in the 1st group when compared to the 2nd group of CLL patients. Furthermore, clustering analysis validated that all the samples from patient #1 clustered together, showing clear separation from the samples of the other CLL patients. Conclusions: This study unveiled a small gene expression signature consisting of nine genes that distinguished an untreated CLL patient who followed prolonged periods of total fasting, maintaining a gradual growth trend of lymphocytosis, compared to five untreated CLL patients with a varied diet. Future investigations focusing on patient #1 could potentially shed light on the role of prolonged periodic fasting and the implication of this specific gene signature in sustaining the lymphocytosis trend and the favorable course of the disease.


Assuntos
Jejum , Leucemia Linfocítica Crônica de Células B , Transcriptoma , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Análise por Conglomerados , Dieta Vegetariana , Leucemia Linfocítica Crônica de Células B/genética , Linfocitose
3.
Cancers (Basel) ; 13(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921415

RESUMO

Waldenström Macroglobulinemia (WM) is a B-cell lymphoma characterized by the precursor condition IgM monoclonal gammopathies of undetermined significance (IgM MGUS). We performed a gene expression profiling study to compare the transcriptome signatures of bone marrow (BM) B-cells and plasma cells of 36 WM patients, 13 IgM MGUS cases, and 7 healthy subjects used as controls (CTRLs) by Affymetrix microarray. We determined 2038 differentially expressed genes (DEGs) in CD19+ cells and 29 DEGs genes in CD138+ cells, respectively. The DEGs identified in B-cells were associated with KEGG pathways, mainly involved in hematopoietic cell lineage antigens, cell adhesion/focal adhesion/transmembrane proteins, adherens junctions, Wnt-signaling pathway, BCR-signaling pathway, calcium signaling pathway, complement/coagulation cascade, platelet activation, cytokine-cytokine receptor interactions, and signaling pathways responsible for cell cycle, apoptosis, proliferation and survival. In conclusion, we showed the deregulation of groups of genes belonging to KEGG pathways in the comparison among WM vs. IgM MGUS vs. CTRLs in B-cells. Interestingly, a small set of genes in B-cells displayed a common transcriptome expression profile between WM and IgM MGUS compared to CTRLs, suggesting its possible role in the risk of transformation of IgM MGUS to WM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA