Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(9)2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31058807

RESUMO

Human papillomavirus (HPV)-induced cancers will remain a significant clinical challenge for decades. Thus, the development of novel treatment strategies is urgently required, which should benefit from improving our understanding of the mechanisms of HPV-induced cell transformation. This should also include analyses of hypoxic tumor cells, which represent a major problem for cancer therapy. Recent evidence indicates that the PI3K/AKT/mTOR network plays a key role for the virus/host cell crosstalk in both normoxic and hypoxic HPV-positive cancer cells. In normoxic cells, the efficacy of the senescence induction upon experimental E6/E7 repression depends on active mTORC1 signaling. Under hypoxia, however, HPV-positive cancer cells can evade senescence due to hypoxic impairment of mTORC1 signaling, albeit the cells strongly downregulate E6/E7. Hypoxic repression of E6/E7 is mediated by the AKT kinase, which is activated under hypoxia by its canonical upstream regulators mTORC2 and PI3K. This review highlights our current knowledge about the oxygen-dependent crosstalk of the PI3K/AKT/mTOR signaling circuit with the HPV oncogenes and the phenotypic state of the host cell. Moreover, since the PI3K/AKT/mTOR pathway is considered to be a promising target for anticancer therapy, we discuss clinical implications for the treatment of HPV-positive cervical and head and neck squamous cell carcinomas.


Assuntos
Interações Hospedeiro-Patógeno , Infecções por Papillomavirus/complicações , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Neoplasias do Colo do Útero/etiologia , Neoplasias do Colo do Útero/metabolismo , Alphapapillomavirus/fisiologia , Animais , Suscetibilidade a Doenças , Feminino , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/virologia
2.
mBio ; 10(1)2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755508

RESUMO

Hypoxia is linked to therapeutic resistance and poor clinical prognosis for many tumor entities, including human papillomavirus (HPV)-positive cancers. Notably, HPV-positive cancer cells can induce a dormant state under hypoxia, characterized by a reversible growth arrest and strong repression of viral E6/E7 oncogene expression, which could contribute to therapy resistance, immune evasion and tumor recurrence. The present work aimed to gain mechanistic insights into the pathway(s) underlying HPV oncogene repression under hypoxia. We show that E6/E7 downregulation is mediated by hypoxia-induced stimulation of AKT signaling. Ablating AKT function in hypoxic HPV-positive cancer cells by using chemical inhibitors efficiently counteracts E6/E7 repression. Isoform-specific activation or downregulation of AKT1 and AKT2 reveals that both AKT isoforms contribute to hypoxic E6/E7 repression and act in a functionally redundant manner. Hypoxic AKT activation and consecutive E6/E7 repression is dependent on the activities of the canonical upstream AKT regulators phosphoinositide 3-kinase (PI3K) and mechanistic target of rapamycin (mTOR) complex 2 (mTORC2). Hypoxic downregulation of E6/E7 occurs, at least in part, at the transcriptional level. Modulation of E6/E7 expression by the PI3K/mTORC2/AKT cascade is hypoxia specific and not observed in normoxic HPV-positive cancer cells. Quantitative proteome analyses identify additional factors as candidates to be involved in hypoxia-induced activation of the PI3K/mTORC2/AKT signaling cascade and in the AKT-dependent repression of the E6/E7 oncogenes under hypoxia. Collectively, these data uncover a functional key role of the PI3K/mTORC2/AKT signaling cascade for viral oncogene repression in hypoxic HPV-positive cancer cells and provide new insights into the poorly understood cross talk between oncogenic HPVs and their host cells under hypoxia.IMPORTANCE Oncogenic HPV types are major human carcinogens. Under hypoxia, HPV-positive cancer cells can repress the viral E6/E7 oncogenes and induce a reversible growth arrest. This response could contribute to therapy resistance, immune evasion, and tumor recurrence upon reoxygenation. Here, we uncover evidence that HPV oncogene repression is mediated by hypoxia-induced activation of canonical PI3K/mTORC2/AKT signaling. AKT-dependent downregulation of E6/E7 is only observed under hypoxia and occurs, at least in part, at the transcriptional level. Quantitative proteome analyses identify additional factors as candidates to be involved in AKT-dependent E6/E7 repression and/or hypoxic PI3K/mTORC2/AKT activation. These results connect PI3K/mTORC2/AKT signaling with HPV oncogene regulation, providing new mechanistic insights into the cross talk between oncogenic HPVs and their host cells.


Assuntos
Hipóxia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Oncogênicas Virais/biossíntese , Papillomaviridae/fisiologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Regulação para Baixo , Interações Hospedeiro-Patógeno , Humanos
3.
Trends Microbiol ; 26(2): 158-168, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28823569

RESUMO

Human papillomavirus (HPV)-induced cancers are expected to remain a major health problem worldwide for decades. The growth of HPV-positive cancer cells depends on the sustained expression of the viral E6 and E7 oncogenes which act in concert with still poorly defined cellular alterations. E6/E7 constitute attractive therapeutic targets since E6/E7 inhibition rapidly induces senescence in HPV-positive cancer cells. This cellular response is linked to the reconstitution of the antiproliferative p53 and pRb pathways, and to prosenescent mTOR signaling. Hypoxic HPV-positive cancer cells could be a major obstacle for treatment strategies targeting E6/E7 since they downregulate E6/E7 but evade senescence through hypoxia-induced mTOR impairment. Prospective E6/E7 inhibitors may therefore benefit from a combination with treatment strategies directed against hypoxic tumor cells.


Assuntos
Carcinogênese , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/patogenicidade , Regulação Neoplásica da Expressão Gênica , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Hipóxia , Neoplasias/virologia , Proteínas Oncogênicas/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Repressoras/metabolismo , Serina-Treonina Quinases TOR
4.
Proc Natl Acad Sci U S A ; 114(6): E990-E998, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115701

RESUMO

Oncogenic human papillomaviruses (HPVs) are closely linked to major human malignancies, including cervical and head and neck cancers. It is widely assumed that HPV-positive cancer cells are under selection pressure to continuously express the viral E6/E7 oncogenes, that their intracellular p53 levels are reconstituted on E6/E7 repression, and that E6/E7 inhibition phenotypically results in cellular senescence. Here we show that hypoxic conditions, as are often found in subregions of cervical and head and neck cancers, enable HPV-positive cancer cells to escape from these regulatory principles: E6/E7 is efficiently repressed, yet, p53 levels do not increase. Moreover, E6/E7 repression under hypoxia does not result in cellular senescence, owing to hypoxia-associated impaired mechanistic target of rapamycin (mTOR) signaling via the inhibitory REDD1/TSC2 axis. Instead, a reversible growth arrest is induced that can be overcome by reoxygenation. Impairment of mTOR signaling also interfered with the senescence response of hypoxic HPV-positive cancer cells toward prosenescent chemotherapy in vitro. Collectively, these findings indicate that hypoxic HPV-positive cancer cells can induce a reversible state of dormancy, with decreased viral antigen synthesis and increased therapeutic resistance, and may serve as reservoirs for tumor recurrence on reoxygenation.


Assuntos
Senescência Celular/genética , Regulação Neoplásica da Expressão Gênica , Regulação Viral da Expressão Gênica , Papillomaviridae/genética , Hipóxia Celular , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HCT116 , Células HeLa , Células Hep G2 , Interações Hospedeiro-Patógeno/genética , Humanos , Hipóxia , Células MCF-7 , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/virologia , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/metabolismo , Papillomaviridae/fisiologia , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia
5.
Oncotarget ; 8(63): 106342-106351, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29290953

RESUMO

Oncogenic types of human papillomaviruses (HPVs) are major human carcinogens. Cancer cells typically exhibit metabolic alterations which support their malignant growth. These include an enhanced rate of aerobic glycolysis ('Warburg effect') which in cancer cells is often linked to an increased expression of the rate-limiting glycolytic enzyme Hexokinase 2 (HK2). Intriguingly, recent studies indicate that the HPV E6/E7 oncogenes cause the metabolic reprogramming in HPV-positive cancer cells by directly upregulating HK2 expression. Notably, however, these results were obtained upon ectopic overexpression of E6/E7. Here, we investigated whether HK2 levels are affected by the endogenous E6/E7 amounts present in HPV-positive cancer cell lines. RNA interference analyses reveal that the sustained E6/E7 expression is critical to maintain HK2 expression levels in HeLa cells. Mechanistically, this effect is linked to the E6/E7-dependent upregulation of HK2-stimulatory MYC expression and the E6/E7-induced downregulation of the HK2-inhibitory micro(mi)RNA miR-143-3p. Importantly, however, a stimulatory effect of E6/E7 on HK2 expression was observed only in HeLa among a panel of 8 different HPV-positive cervical and head and neck cancer cell lines. Thus, whereas these results support the notion that E6/E7 can increase HK2 expression, they argue against the concept that the viral oncogenes, at endogenous expression levels, commonly induce the metabolic switch of HPV-positive cancer cells towards aerobic glycolysis by directly or indirectly stimulating HK2 expression.

6.
Oncoimmunology ; 5(7): e1116674, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27622013

RESUMO

Natural Killer (NK) cells are innate effector cells that are able to recognize and eliminate tumor cells through engagement of their surface receptors. NKp30 is a potent activating NK cell receptor that elicits efficient NK cell-mediated target cell killing. Recently, B7-H6 was identified as tumor cell surface expressed ligand for NKp30. Enhanced B7-H6 mRNA levels are frequently detected in tumor compared to healthy tissues. To gain insight in the regulation of expression of B7-H6 in tumors, we investigated transcriptional mechanisms driving B7-H6 expression by promoter analyses. Using luciferase reporter assays and chromatin immunoprecipitation we mapped a functional binding site for Myc, a proto-oncogene overexpressed in certain tumors, in the B7-H6 promoter. Pharmacological inhibition or siRNA/shRNA-mediated knock-down of c-Myc or N-Myc significantly decreased B7-H6 expression on a variety of tumor cells including melanoma, pancreatic carcinoma and neuroblastoma cell lines. In tumor cell lines from different origin and primary tumor tissues of hepatocellular carcinoma (HCC), lymphoma and neuroblastoma, mRNA levels of c-Myc positively correlated with B7-H6 expression. Most importantly, upon inhibition or knock-down of c-Myc in tumor cells impaired NKp30-mediated degranulation of NK cells was observed. Thus, our data imply that Myc driven tumors could be targets for cancer immunotherapy exploiting the NKp30/B7-H6 axis.

8.
Sci Rep ; 6: 26979, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27264969

RESUMO

Inhibition of deubiquitinase (DUB) activity is a promising strategy for cancer therapy. VLX1570 is an inhibitor of proteasome DUB activity currently in clinical trials for relapsed multiple myeloma. Here we show that VLX1570 binds to and inhibits the activity of ubiquitin-specific protease-14 (USP14) in vitro, with comparatively weaker inhibitory activity towards UCHL5 (ubiquitin-C-terminal hydrolase-5). Exposure of multiple myeloma cells to VLX1570 resulted in thermostabilization of USP14 at therapeutically relevant concentrations. Transient knockdown of USP14 or UCHL5 expression by electroporation of siRNA reduced the viability of multiple myeloma cells. Treatment of multiple myeloma cells with VLX1570 induced the accumulation of proteasome-bound high molecular weight polyubiquitin conjugates and an apoptotic response. Sensitivity to VLX1570 was moderately affected by altered drug uptake, but was unaffected by overexpression of BCL2-family proteins or inhibitors of caspase activity. Finally, treatment with VLX1570 was found to lead to extended survival in xenograft models of multiple myeloma. Our findings demonstrate promising antiproliferative activity of VLX1570 in multiple myeloma, primarily associated with inhibition of USP14 activity.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Azepinas/farmacologia , Compostos de Benzilideno/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteassoma/farmacologia , Ubiquitina Tiolesterase/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Azepinas/química , Azepinas/metabolismo , Compostos de Benzilideno/química , Compostos de Benzilideno/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Estabilidade Enzimática , Feminino , Humanos , Camundongos SCID , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Inibidores de Proteassoma/metabolismo , Ligação Proteica , Proteólise , Ubiquitina Tiolesterase/química , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA