RESUMO
Anthropogenic activities generate increasing disturbance in wildlife especially in extreme environments where species have to cope with rapid environmental changes. In Antarctica, while studies on human disturbance have mostly focused on stress response through physiological and behavioral changes, local variability in population dynamics has been addressed more scarcely. In addition, the mechanisms by which breeding communities are affected around research stations remain unclear. Our study aims at pointing out the fine-scale impact of human infrastructures on the spatial variability in Adélie penguin (Pygoscelis adeliae) colonies dynamics. Taking 24 years of population monitoring, we modeled colony breeding success and growth rate in response to both anthropic and land-based environmental variables. Building density around colonies was the second most important variable explaining spatial variability in breeding success after distance from skua nests, the main predators of penguins on land. Building density was positively associated with penguins breeding success. We discuss how buildings may protect penguins from avian predation and environmental conditions. The drivers of colony growth rate included topographical variables and the distance to human infrastructures. A strong correlation between 1-year lagged growth rate and colony breeding success was coherent with the use of public information by penguins to select their initial breeding site. Overall, our study brings new insights about the relative contribution and ecological implications of human presence on the local population dynamics of a sentinel species in Antarctica.
Assuntos
Spheniscidae , Animais , Humanos , Spheniscidae/fisiologia , Dinâmica Populacional , Cruzamento , Regiões AntárticasRESUMO
Large-scale breeding failures, such as offspring die-offs, can disproportionately impact wildlife populations that are characterized by a few large colonies. However, breeding monitoring-and thus investigations of such die-offs-is especially challenging in species with long reproductive cycles. We investigate two unresolved dramatic breeding failures that occurred in consecutive years (2009 and 2010) in a large king penguin Aptenodytes patagonicus colony, a long-lived species with a breeding cycle lasting over a year. Here we found that a single period, winter 2009, was likely responsible for the occurrence of breeding anomalies during both breeding seasons, suggesting that adults experienced poor foraging conditions at sea at that time. Following that unfavorable winter, the 2009 breeding cohort-who were entering the late stage of chick-rearing-immediately experienced high chick mortality. Meanwhile, the 2010 breeding cohort greatly delayed their arrival and egg laying, which would have otherwise started not long after the winter. The 2010 breeding season continued to display anomalies during the incubation and chick-rearing period, such as high abandonment rate, long foraging trips and eventually the death of all chicks in winter 2010. These anomalies could have resulted from either a domino-effect caused by the delayed laying, the continuation of poor foraging conditions, or both. This study provides an example of a large-scale catastrophic breeding failure and highlights the importance of the winter period on phenology and reproduction success for wildlife that breed in few large colonies.
Assuntos
Spheniscidae , Animais , Estações do Ano , Galinhas , Animais Selvagens , ReproduçãoRESUMO
Mercury (Hg) pollution is a global problem affecting remote areas of the open ocean, but the bioaccumulation of this neurotoxic pollutant in tropical top predators remains poorly documented. The objective of this study was to determine Hg contamination of the seabird community nesting on Clipperton Island using blood and feathers to investigate short and longer-term contamination, respectively. We examined the significance of various factors (species, sex, feeding habitat [δ13C] and trophic position [δ15N]) on Hg concentrations in six seabird species. Among species, Great Frigatebirds had the highest Hg concentrations in blood and feathers, boobies had intermediate values, and Brown Noddies and Sooty Terns the lowest. At the interspecific level, although δ13C values segregated boobies from frigatebirds and noddies/terns, Hg concentrations were explained by neither δ13C nor δ15N values. At the intraspecific level, both Hg concentrations in blood and feathers show relatively small variations (16-32 and 26-74%, respectively), suggesting that feeding ecology had low seasonal variation among individuals. Despite most species being sexually dimorphic, differences in Hg contamination according to sex was detected only in Brown Boobies during the breeding period. Indeed, female Brown Boobies feed at a higher trophic level and in a different area than males during this period, resulting in higher blood Hg concentrations. The present study also shows that most of the seabirds sampled at Clipperton Island had little or no exposure to Hg toxicity, with 30% in the no risk category and 70% in the low risk category.
Assuntos
Charadriiformes , Mercúrio , Humanos , Masculino , Animais , Feminino , Mercúrio/análise , Oceano Pacífico , Monitoramento Ambiental/métodos , Aves , EcossistemaRESUMO
Breeding success is often correlated with climate, but the underlying bottom-up mechanisms remain elusive-particularly in marine environments. Consequently, conservation plans of many species often consider climate change as a unilateral threat, ignoring that even nearby populations can show contradicting trends with climate. Better understanding the relationship between climate and environment at different scales can help us interpret local differences in population trends, ultimately providing better tools to evaluate the global response of a species to threats such as global warming. We studied a growing king penguin population nesting at Kerguelen island (Southern Indian Ocean), hosting one of the largest colonies in the world. We used a unique dataset of foraging, breeding success, and climate data spanning over 25 years to examine the links between climate, marine environment, and breeding success at this colony. The results were then compared to the neighboring population of Crozet, which experienced the steepest decline for this species over the past few decades. At Crozet, penguins experienced lower breeding success in warmer years due to productive currents shifting away from the colony, affecting foraging behavior during chick rearing. At Kerguelen, while chick mass and survival experienced extreme variation from year to year, the annual variation was not associated with the position of the currents, which varied very little compared to the situation in Crozet. Rather than being affected by prey distribution shifts, we found evidence that chick provisioning in Kerguelen might be influenced by prey abundance, which seem to rather increase in warmer conditions. Furthermore, warmer air temperature in winter increased chick survival rate, likely due to reduced thermoregulation cost. Investigating the mechanisms between climate and fitness allowed us to predict two different fates for these populations regarding ongoing global warming.
Assuntos
Spheniscidae , Animais , Spheniscidae/fisiologia , Oceano Índico , Temperatura , Estações do Ano , Estudos Longitudinais , Ecossistema , Mudança ClimáticaRESUMO
Anthropogenic climate change is resulting in spatial redistributions of many species. We assessed the potential effects of climate change on an abundant and widely distributed group of diving birds, Eudyptes penguins, which are the main avian consumers in the Southern Ocean in terms of biomass consumption. Despite their abundance, several of these species have undergone population declines over the past century, potentially due to changing oceanography and prey availability over the important winter months. We used light-based geolocation tracking data for 485 individuals deployed between 2006 and 2020 across 10 of the major breeding locations for five taxa of Eudyptes penguins. We used boosted regression tree modelling to quantify post-moult habitat preference for southern rockhopper (E. chrysocome), eastern rockhopper (E. filholi), northern rockhopper (E. moseleyi) and macaroni/royal (E. chrysolophus and E. schlegeli) penguins. We then modelled their redistribution under two climate change scenarios, representative concentration pathways RCP4.5 and RCP8.5 (for the end of the century, 2071-2100). As climate forcings differ regionally, we quantified redistribution in the Atlantic, Central Indian, East Indian, West Pacific and East Pacific regions. We found sea surface temperature and sea surface height to be the most important predictors of current habitat for these penguins; physical features that are changing rapidly in the Southern Ocean. Our results indicated that the less severe RCP4.5 would lead to less habitat loss than the more severe RCP8.5. The five taxa of penguin may experience a general poleward redistribution of their preferred habitat, but with contrasting effects in the (i) change in total area of preferred habitat under climate change (ii) according to geographic region and (iii) the species (macaroni/royal vs. rockhopper populations). Our results provide further understanding on the regional impacts and vulnerability of species to climate change.
Assuntos
Spheniscidae , Humanos , Animais , Melhoramento Vegetal , Ecossistema , Previsões , Mudança Climática , Oceanos e MaresRESUMO
Penguins lost the ability to fly more than 60 million years ago, subsequently evolving a hyper-specialized marine body plan. Within the framework of a genome-scale, fossil-inclusive phylogeny, we identify key geological events that shaped penguin diversification and genomic signatures consistent with widespread refugia/recolonization during major climate oscillations. We further identify a suite of genes potentially underpinning adaptations related to thermoregulation, oxygenation, diving, vision, diet, immunity and body size, which might have facilitated their remarkable secondary transition to an aquatic ecology. Our analyses indicate that penguins and their sister group (Procellariiformes) have the lowest evolutionary rates yet detected in birds. Together, these findings help improve our understanding of how penguins have transitioned to the marine environment, successfully colonizing some of the most extreme environments on Earth.
Assuntos
Spheniscidae , Animais , Evolução Biológica , Fósseis , Genoma , Genômica , Filogenia , Spheniscidae/genéticaRESUMO
Niche theory predicts that to reduce competition for the same resource, sympatric ecologically similar species should exploit divergent niches and segregate in one or more dimensions. Seasonal variations in environmental conditions and energy requirements can influence the mechanisms and the degree of niche segregation. However, studies have overlooked the multi-dimensional aspect of niche segregation over the whole annual cycle, and key facets of species co-existence still remain ambiguous. The present study provides insights into the niche use and partitioning of two morphologically and ecologically similar seabirds, the common (CDP, Pelecanoides urinatrix) and the South Georgian diving petrel (SGDP, Pelecanoides georgicus). Using phenology, at-sea distribution, diving behavior and isotopic data (during the incubation, chick-rearing and non-breeding periods), we show that the degree of partitioning was highly stage-dependent. During the breeding season, the greater niche segregation during chick-rearing than incubation supported the hypothesis that resource partitioning increases during energetically demanding periods. During the post breeding period, while species-specific latitudinal differences were expected (species specific water mass preference), CDP and SGDP also migrated in divergent directions. This segregation in migration area may not be only a response to the selective pressure arising from competition avoidance between sympatric species, but instead, could reflect past evolutionary divergence. Such stage-dependent and context-dependent niche segregation demonstrates the importance of integrative approaches combining techniques from different fields, throughout the entire annual cycle, to better understand the co-existence of ecologically similar species. This is particularly relevant in order to fully understand the short and long-term effects of ongoing environmental changes on species distributions and communities.This work demonstrates the need of integrative multi-dimensional approaches combining concepts and techniques from different fields to understand the mechanism and causal factors of niche segregation.
Assuntos
Irmãos , Simpatria , Animais , Aves/fisiologia , Ecossistema , Especificidade da EspécieRESUMO
Sexual competition is increasingly recognized as an important selective pressure driving species distributions. However, few studies have investigated the relative importance of interpopulation versus intrapopulation competition in relation to habitat availability and selection. To explain spatial segregation between sexes that often occurs in non-territorial and central place foragers, such as seabirds, two hypotheses are commonly used. The 'competitive exclusion' hypothesis states that dominant individuals should exclude subordinate individuals through direct competition, whereas the 'niche divergence' hypothesis states that segregation occurs due to past competition and habitat specialization. We tested these hypotheses in two populations of an extreme wide-ranging and sexually dimorphic seabird, investigating the relative role of intrapopulation and interpopulation competition in influencing sex-specific distribution and habitat preferences. Using GPS loggers, we tracked 192 wandering albatrosses Diomedea exulans during four consecutive years (2016-2019), from two neighbouring populations in the Southern Ocean (Prince Edward and Crozet archipelagos). We simulated pseudo-tracks to create a null spatial distribution and used Kernel Density Estimates (KDE) and Resource Selection Functions (RSF) to distinguish the relative importance of within- versus between-population competition. Kernel Density Estimates showed that only intrapopulation sexual segregation was significant for each monitoring year, and that tracks between the two colonies resulted in greater overlap than expected from the null distribution, especially for the females. RSF confirmed these results and highlighted key at-sea foraging areas, even if the estimated of at-sea densities were extremely low. These differences in selected areas between sites and sexes were, however, associated with high interannual variability in habitat preferences, with no clear specific preferences per site and sex. Our results suggest that even with low at-sea population densities, historic intrapopulation competition in wide-ranging seabirds may have led to sexual dimorphism and niche specialization, favouring the 'niche divergence' hypothesis. In this study, we provide a protocol to study competition within as well as between populations of central place foragers. This is relevant for understanding their distribution patterns and population regulation, which could potentially improve management of threatened populations.
Assuntos
Aves , Comportamento Alimentar , Animais , Ecossistema , Feminino , Masculino , Densidade Demográfica , Caracteres SexuaisRESUMO
The period of emancipation in seabirds, when juveniles change from a terrestrial existence to a life at sea, is associated with many challenges. Apart from finding favourable foraging sites, they have to develop effective prey search patterns and physiological capacities that enable them to capture sufficient prey to meet their energetic needs. Animals that dive to forage, such as king penguins (Aptenodytes patagonicus), need to acquire an adequate breath-hold capacity, allowing them to locate and capture prey at depth. To investigate the ontogeny of their dive capacity and foraging performance, we implanted juvenile king penguins before their first departure to sea and also adult breeders with a data-logger recording pressure and temperature. We found that juvenile king penguins possess a remarkable dive capacity when leaving their natal colony, enabling them to conduct dives in excess of 100â m within their first week at sea. Despite this, juvenile dive/foraging performance, investigated in relation to dive depth, remained below the adult level throughout their first year at sea, probably reflecting physiological limitations as a result of incomplete maturation. A significantly shallower foraging depth of juveniles, particularly during their first 5 months at sea, could also indicate differences in foraging strategy and targeted prey. The initially greater wiggle rate suggests that juveniles fed opportunistically and also targeted different prey from adults and/or that many of the wiggles of juveniles reflect unsuccessful prey-capture attempts, indicating a lower foraging proficiency. After 5 months, this difference disappeared, suggesting sufficient physical maturation and improvement of juvenile foraging skills.
Assuntos
Mergulho , Spheniscidae , Animais , Comportamento Animal , Comportamento Alimentar , TemperaturaRESUMO
Southern Ocean ecosystems are under pressure from resource exploitation and climate change1,2. Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels. Integration of more than 4,000 tracks from 17 bird and mammal species reveals AESs around sub-Antarctic islands in the Atlantic and Indian Oceans and over the Antarctic continental shelf. Fishing pressure is disproportionately concentrated inside AESs, and climate change over the next century is predicted to impose pressure on these areas, particularly around the Antarctic continent. At present, 7.1% of the ocean south of 40°S is under formal protection, including 29% of the total AESs. The establishment and regular revision of networks of protection that encompass AESs are needed to provide long-term mitigation of growing pressures on Southern Ocean ecosystems.
Assuntos
Sistemas de Identificação Animal , Organismos Aquáticos/fisiologia , Mudança Climática/estatística & dados numéricos , Conservação dos Recursos Naturais/métodos , Ecossistema , Oceanos e Mares , Comportamento Predatório , Animais , Regiões Antárticas , Biodiversidade , Aves , Peixes , Cadeia Alimentar , Camada de Gelo , Mamíferos , Dinâmica PopulacionalRESUMO
The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations.
RESUMO
The non-breeding period plays a major role in seabird survival and population dynamics. However, our understanding of the migratory behaviour, moulting and feeding strategies of non-breeding seabirds is still very limited, especially for small-sized species. The present study investigated the post-breeding behaviour of three distant populations (Kerguelen Archipelago, southeastern Australia, New Zealand) of the common diving petrel (CDP) (Pelecanoides urinatrix), an abundant, widely distributed zooplanktivorous seabird breeding throughout the southern Atlantic, Indian and Pacific oceans. The timing, geographical destination and activity pattern of birds were quantified through geolocator deployments during the post-breeding migration, while moult pattern of body feathers was investigated using stable isotope analysis. Despite the high energetic cost of flapping flight, all the individuals quickly travelled long distances (greater than approx. 2500 km) after the end of the breeding season, targeting oceanic frontal systems. The three populations, however, clearly diverged spatially (migration pathways and destinations), and temporally (timing and duration) in their post-breeding movements, as well as in their period of moult. Philopatry to distantly separated breeding grounds, different breeding phenologies and distinct post-breeding destinations suggest that the CDP populations have a high potential for isolation, and hence, speciation. These results contribute to improving knowledge of ecological divergence and evolution between populations, and inform the challenges of conserving migratory species.
RESUMO
Like all birds, penguins undergo periodic molt, during which they replace old feathers. However, unlike other birds, penguins replace their entire plumage within a short period while fasting ashore. During molt, king penguins (Aptenodytes patagonicus) lose half of their initial body mass, most importantly their insulating subcutaneous fat and half of their pectoral muscle mass. The latter might challenge their capacity to generate and sustain a sufficient mechanical power output to swim to distant food sources and propel themselves to great depth for successful prey capture. To investigate the effects of the annual molt fast on their dive/foraging performance, we studied various dive/foraging parameters and peripheral temperature patterns in immature king penguins across two molt cycles, after birds had spent their first and second year at sea, using implanted data-loggers. We found that the dive/foraging performance of immature king penguins was significantly reduced during post-molt foraging trips. Dive and bottom duration for a given depth were shorter during post-molt and post-dive surface interval duration was longer, reducing overall dive efficiency and underwater foraging time. We attribute this decline to the severe physiological changes that birds undergo during their annual molt. Peripheral temperature patterns differed greatly between pre- and post-molt trips, indicating the loss of the insulating subcutaneous fat layer during molt. Peripheral perfusion, as inferred from peripheral temperature, was restricted to short periods at night during pre-molt but occurred throughout extended periods during post-molt, reflecting the need to rapidly deposit an insulating fat layer during the latter period.
Assuntos
Mergulho/fisiologia , Muda/fisiologia , Spheniscidae/fisiologia , Animais , Plumas/crescimento & desenvolvimento , Comportamento Alimentar/fisiologia , Feminino , Masculino , Oceanos e Mares , TemperaturaRESUMO
BACKGROUND: Penguins (Sphenisciformes) are a remarkable order of flightless wing-propelled diving seabirds distributed widely across the southern hemisphere. They share a volant common ancestor with Procellariiformes close to the Cretaceous-Paleogene boundary (66 million years ago) and subsequently lost the ability to fly but enhanced their diving capabilities. With â¼20 species among 6 genera, penguins range from the tropical Galápagos Islands to the oceanic temperate forests of New Zealand, the rocky coastlines of the sub-Antarctic islands, and the sea ice around Antarctica. To inhabit such diverse and extreme environments, penguins evolved many physiological and morphological adaptations. However, they are also highly sensitive to climate change. Therefore, penguins provide an exciting target system for understanding the evolutionary processes of speciation, adaptation, and demography. Genomic data are an emerging resource for addressing questions about such processes. RESULTS: Here we present a novel dataset of 19 high-coverage genomes that, together with 2 previously published genomes, encompass all extant penguin species. We also present a well-supported phylogeny to clarify the relationships among penguins. In contrast to recent studies, our results demonstrate that the genus Aptenodytes is basal and sister to all other extant penguin genera, providing intriguing new insights into the adaptation of penguins to Antarctica. As such, our dataset provides a novel resource for understanding the evolutionary history of penguins as a clade, as well as the fine-scale relationships of individual penguin lineages. Against this background, we introduce a major consortium of international scientists dedicated to studying these genomes. Moreover, we highlight emerging issues regarding ensuring legal and respectful indigenous consultation, particularly for genomic data originating from New Zealand Taonga species. CONCLUSIONS: We believe that our dataset and project will be important for understanding evolution, increasing cultural heritage and guiding the conservation of this iconic southern hemisphere species assemblage.
Assuntos
Genoma , Spheniscidae/genética , Animais , Evolução Molecular , FilogeniaRESUMO
The mechanisms that determine patterns of species dispersal are important factors in the production and maintenance of biodiversity. Understanding these mechanisms helps to forecast the responses of species to environmental change. Here, we used a comparative framework and genomewide data obtained through RAD-Seq to compare the patterns of connectivity among breeding colonies for five penguin species with shared ancestry, overlapping distributions and differing ecological niches, allowing an examination of the intrinsic and extrinsic barriers governing dispersal patterns. Our findings show that at-sea range and oceanography underlie patterns of dispersal in these penguins. The pelagic niche of emperor (Aptenodytes forsteri), king (A. patagonicus), Adélie (Pygoscelis adeliae) and chinstrap (P. antarctica) penguins facilitates gene flow over thousands of kilometres. In contrast, the coastal niche of gentoo penguins (P. papua) limits dispersal, resulting in population divergences. Oceanographic fronts also act as dispersal barriers to some extent. We recommend that forecasts of extinction risk incorporate dispersal and that management units are defined by at-sea range and oceanography in species lacking genetic data.
Assuntos
Distribuição Animal , Genética Populacional , Genômica , Spheniscidae/genética , Animais , Regiões Antárticas , Ecossistema , Fluxo Gênico , Variação Genética , Técnicas de Genotipagem , Filogenia , Polimorfismo de Nucleotídeo Único , Spheniscidae/classificaçãoRESUMO
The Southern Ocean is currently experiencing major environmental changes, including in sea-ice cover. Such changes strongly influence ecosystem structure and functioning and affect the survival and reproduction of predators such as seabirds. These effects are likely mediated by reduced availability of food resources. As such, seabirds are reliable eco-indicators of environmental conditions in the Antarctic region. Here, based on 9 years of sea-ice data, we found that the breeding success of Adélie penguins (Pygoscelis adeliae) reaches a peak at intermediate sea-ice cover (ca. 20%). We further examined the effects of sea-ice conditions on the foraging activity of penguins, measured at multiple scales from individual dives to foraging trips. Analysis of temporal organisation of dives, including fractal and bout analyses, revealed an increasingly consistent behaviour during years with extensive sea-ice cover. The relationship between several dive parameters and sea-ice cover in the foraging area appears to be quadratic. In years of low and high sea-ice cover, individuals adjusted their diving effort by generally diving deeper, more frequently and by resting at the surface between dives for shorter periods of time than in years with intermediate sea-ice cover. Our study therefore suggests that sea-ice cover is likely to affect the reproductive performance of Adélie penguins through its effects on foraging behaviour, as breeding success and most diving parameters share a common optimum. Some years, however, deviated from this general trend, suggesting that other factors (e.g. precipitation during the breeding season) might sometimes become preponderant over the sea-ice effects on breeding and foraging performance. Our study highlights the value of monitoring fitness parameters and individual behaviour concomitantly over the long-term to better characterize optimal environmental conditions and potential resilience of wildlife. Such an approach is crucial if we want to anticipate the effects of environmental change on Antarctic penguin populations.
Assuntos
Mergulho , Camada de Gelo , Reprodução , Spheniscidae/fisiologia , Animais , Regiões Antárticas , Ecossistema , Estações do AnoRESUMO
The poorly known winter foraging ecology of the king penguin, a major Southern Ocean consumer, was investigated at the subantarctic Crozet Islands where the largest global population breeds. Blood δ13C and δ15N values were used as proxies of the birds' foraging habitat and diet, respectively, and circulating prolactin levels helped in determining the birds' reproductive status. Plasma prolactin concentrations showed that king penguin adults of unknown breeding status (n = 52) that were present at the colony in winter were in fact breeders and failed breeders, but were not non -breeders. Circulating prolactin was neither related to δ13C nor δ15N values, thus suggesting that both breeders and failed breeders used the same foraging habitats and fed on the same prey. Plasma and blood cell isotopic values depicted four new relevant biological features on the feeding strategies of king penguins during the critical winter period: (1) 42% of the birds foraged in the distant Antarctic Zone, but 58% fed primarily in subantarctic waters (δ13C), (2) they preyed upon myctophids in both zones (δ15N), (3) individuals were consistent in their foraging strategies over the winter months (δ13C and δ15N), and (4) a higher proportion of females (77%-80%) than males (27%-31%) favored feeding in distant Antarctic waters (δ13C). This study highlights trophic connectivity between subantarctic and Antarctic ecosystems and hence the key role of energy export from Antarctic waters to sustain breeding populations of subantarctic predators, including during the Austral winter.
RESUMO
Little is known about the early life at sea of marine top predators, like deep-diving king penguins (Aptenodytes patagonicus), although this dispersal phase is probably a critical phase in their life. Apart from finding favourable foraging sites, they have to develop effective prey search patterns as well as physiological capacities that enable them to capture sufficient prey to meet their energetic needs. To investigate the ontogeny of their thermoregulatory responses at sea, we implanted 30 juvenile king penguins and 8 adult breeders with a small data logger that recorded pressure and subcutaneous temperature continuously for up to 2.5â years. We found important changes in the development of peripheral temperature patterns of foraging juvenile king penguins throughout their first year at sea. Peripheral temperature during foraging bouts fell to increasingly lower levels during the first 6â months at sea, after which it stabilized. Most importantly, these changes re-occurred during their second year at sea, after birds had fasted for â¼4â weeks on land during their second moult. Furthermore, similar peripheral temperature patterns were also present in adult birds during foraging trips throughout their breeding cycle. We suggest that rather than being a simple consequence of concurrent changes in dive effort or an indication of a physiological maturation process, these seasonal temperature changes mainly reflect differences in thermal insulation. Heat loss estimates for juveniles at sea were initially high but declined to approximately half after â¼6â months at sea, suggesting that juvenile king penguins face a strong energetic challenge during their early oceanic existence.