Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
2.
Eur J Nucl Med Mol Imaging ; 50(2): 287-301, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271158

RESUMO

BACKGROUND: ZED8 is a novel monovalent antibody labeled with zirconium-89 for the molecular imaging of CD8. This work describes nonclinical studies performed in part to provide rationale for and to inform expectations in the early clinical development of ZED8, such as in the studies outlined in clinical trial registry NCT04029181 [1]. METHODS: Surface plasmon resonance, X-ray crystallography, and flow cytometry were used to characterize the ZED8-CD8 binding interaction, its specificity, and its impact on T cell function. Immuno-PET with ZED8 was assessed in huCD8+ tumor-bearing mice and in non-human primates. Plasma antibody levels were measured by ELISA to determine pharmacokinetic parameters, and OLINDA 1.0 was used to estimate radiation dosimetry from image-derived biodistribution data. RESULTS: ZED8 selectively binds to human CD8α at a binding site approximately 9 Å from that of MHCI making mutual interference unlikely. The equilibrium dissociation constant (KD) is 5 nM. ZED8 binds to cynomolgus CD8 with reduced affinity (66 nM) but it has no measurable affinity for rat or mouse CD8. In a series of lymphoma xenografts, ZED8 imaging was able to identify different CD8 levels concordant with flow cytometry. In cynomolgus monkeys with tool compound 89Zr-aCD8v17, lymph nodes were conspicuous by imaging 24 h post-injection, and the pharmacokinetics suggested a flat-fixed first-in-human dose of 4 mg per subject. The whole-body effective dose for an adult human was estimated to be 0.48 mSv/MBq, comparable to existing 89Zr immuno-PET reagents. CONCLUSION: 89Zr immuno-PET with ZED8 appears to be a promising biomarker of tissue CD8 levels suitable for clinical evaluation in cancer patients eligible for immunotherapy.


Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons , Adulto , Humanos , Camundongos , Ratos , Animais , Tomografia por Emissão de Pósitrons/métodos , Indicadores e Reagentes/uso terapêutico , Distribuição Tecidual , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Zircônio/química , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral
3.
MAbs ; 14(1): 2085535, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35867780

RESUMO

Advances in antibody engineering have enabled the construction of novel molecular formats in diverse shapes and sizes, providing new opportunities for biologic therapies and expanding the need to understand how various structural aspects affect their distribution properties. To assess the effect of antibody size on systemic pharmacokinetics (PK) and tissue distribution with or without neonatal Fc receptor (FcRn) binding, we evaluated a series of non-mouse-binding anti-glycoprotein D monoclonal antibody formats, including IgG [~150 kDa], one-armed IgG [~100 kDa], IgG-HAHQ (attenuated FcRn binding) [~150 kDa], F(ab')2 [~100 kDa], and F(ab) [~50 kDa]. Tissue-specific concentration-time profiles were corrected for blood content based on vascular volumes and normalized based on interstitial volumes to allow estimation of interstitial concentrations and interstitial:serum concentration ratios. Blood correction demonstrated that the contribution of circulating antibody on total uptake was greatest at early time points and for highly vascularized tissues. Tissue interstitial PK largely mirrored serum exposure profiles. Similar interstitial:serum ratios were obtained for the two FcRn-binding molecules, IgG and one-armed IgG, which reached pseudo-steady-state kinetics in most tissues. For non-FcRn-binding molecules, interstitial:serum ratios changed over time, suggesting that these molecules did not reach steady-state kinetics during the study. Furthermore, concentration-time profiles of both intact and catabolized molecule were measured by a dual tracer approach, enabling quantification of tissue catabolism and demonstrating that catabolism levels were highest for IgG-HAHQ. Overall, these data sets provide insight into factors affecting preclinical distribution and may be useful in estimating interstitial concentrations and/or catabolism in human tissues.


Assuntos
Anticorpos Monoclonais , Imunoglobulina G , Antígenos de Histocompatibilidade Classe I , Humanos , Recém-Nascido , Cinética , Receptores Fc , Distribuição Tecidual
4.
Mol Cancer Ther ; 20(10): 2008-2015, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34315765

RESUMO

Advances in antibody engineering have enabled the construction of novel molecular formats in diverse shapes and sizes, providing new opportunities for cancer immunotherapeutic drug discovery while also revealing limitations in knowledge of structure-activity relationships. The current understanding of renal filtration originates largely from data reported for dextrans, IgG, albumin, and selected globular proteins. For a one-armed IgG-based T-cell imaging agent, we observed higher renal signal than typically observed for bivalent IgGs, prompting us to explore the factors governing renal filtration of biologics. We constructed a small representative library of IgG-like formats with varied shapes and hinge flexibilities falling broadly into two categories: branched molecules including bivalent IgG and (scFv)2Fc, and nonbranched molecules including one-armed IgG, one-armed IgG with stacked Fab, and one-armed IgG with a rigid IgA2 hinge. Transmission electron microscopy revealed Y-shaped structures for the branched molecules and pseudo-linear structures for the nonbranched molecules. Single-photon emission CT imaging, autoradiography, and tissue harvest studies demonstrated higher renal uptake and catabolism for nonbranched molecules relative to branched molecules. Among the nonbranched molecules, the one-armed IgG with rigid IgA2 hinge molecule demonstrated higher kidney uptake and decreased systemic exposure relative to molecules with a more flexible hinge. Our results show that differences in shape and hinge flexibility drive the increased glomerular filtration of one-armed relative to bivalent antibodies and highlight the practical advantages of using imaging to assess renal filtration properties. These findings are particularly relevant for T-cell-dependent bispecific molecules, many of which have nonstandard antibody structures.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Barreira de Filtração Glomerular/metabolismo , Imunoglobulina G/imunologia , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Feminino , Barreira de Filtração Glomerular/efeitos dos fármacos , Humanos , Imunoglobulina G/classificação , Camundongos SCID
5.
Mol Cancer Ther ; 20(10): 1956-1965, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34253591

RESUMO

T-cell-dependent bispecific antibodies (TDB) have been a major advancement in the treatment of cancer, allowing for improved targeting and efficacy for large molecule therapeutics. TDBs are comprised of one arm targeting a surface antigen on a cancer cell and another targeting an engaging surface antigen on a cytotoxic T cell. To impart this function, the antibody must be in a bispecific format as opposed to the more conventional bivalent format. Through in vitro and in vivo studies, we sought to determine the impact of changing antibody valency on solid tumor distribution and catabolism. A bivalent anti-HER2 antibody exhibited higher catabolism than its full-length monovalent binding counterpart in vivo by both invasive tissue harvesting and noninvasive single photon emission computed tomography/X-ray computed tomography imaging despite similar systemic exposures for the two molecules. To determine what molecular factors drove in vivo distribution and uptake, we developed a mechanistic model for binding and catabolism of monovalent and bivalent HER2 antibodies in KPL4 cells. This model suggests that observed differences in cellular uptake of monovalent and bivalent antibodies are caused by the change in apparent affinity conferred by avidity as well as differences in internalization and degradation rates of receptor bound antibodies. To our knowledge, this is the first study to directly compare the targeting abilities of monovalent and bivalent full-length antibodies. These findings may inform diverse antibody therapeutic modalities, including T-cell-redirecting therapies and drug delivery strategies relying upon receptor internalization.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/farmacocinética , Afinidade de Anticorpos , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Linfócitos T Citotóxicos/imunologia , Animais , Anticorpos Biespecíficos/imunologia , Apoptose , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos SCID , Receptor ErbB-2/imunologia , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Front Pharmacol ; 12: 601569, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025395

RESUMO

Protein therapeutics have witnessed tremendous use and application in recent years in treatment of various diseases. Predicting efficacy and safety during drug discovery and translational development is a key factor for successful clinical development of these therapies. In general, drug related toxicities are predominantly driven by pharmacokinetic (PK) exposure at off-target sites. This work explores the ocular PK of intravenously administered protein therapeutics to understand impact of antibody format on off-site exposure. Species matched non-binding rabbit antibody proteins (rabFab and rabIgG) were intravenously administered to male New Zealand White rabbits at a single 1 mg bolus dose and exposure was measured up to 3 weeks. As anticipated based on absence of FcRn recycling, rabFab has relatively fast systemic PK (CL-943 mL/day and t1/2-1.93 days) compared to rabIgG (CL-18.5 mL/day and t1/2-8.93 days). Similarly, rabFab has lower absolute ocular exposure in ocular compartments (e.g., vitreous and aqueous humor) compared to rabIgG, despite higher relative exposures (measured as percent tissue partition in ocular tissues relative to serum, based on Cmax and AUC). In general, percent tissue partition based on AUC (in aqueous and vitreous humor) relative to serum exposure were 10.4 and 8.62 for rabFab respectively and 1.11 and 0.64 for rabIgG respectively. This work emphasizes size and format based ocular exposure of intravenously administered protein therapeutics. Findings from this work enable prediction of format based ocular exposure for systemically administered antibody based therapeutics and aid in selection of molecule format for clinical candidate to minimize ocular exposure.

7.
Mol Cancer Ther ; 20(4): 716-725, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33536191

RESUMO

Ovarian cancer is a diverse class of tumors with very few effective treatment options and suboptimal response rates in early clinical studies using immunotherapies. Here we describe LY6/PLAUR domain containing 1 (LYPD1) as a novel target for therapeutic antibodies for the treatment of ovarian cancer. LYPD1 is broadly expressed in both primary and metastatic ovarian cancer with ∼70% prevalence in the serous cancer subset. Bispecific antibodies targeting CD3 on T cells and a tumor antigen on cancer cells have demonstrated significant clinical activity in hematologic cancers. We have developed an anti-LYPD1/CD3 T-cell-dependent bispecific antibody (TDB) to redirect T-cell responses to LYPD1 expressing ovarian cancer. Here we characterize the nonclinical pharmacology of anti-LYPD1/CD3 TDB and show induction of a robust polyclonal T-cell activation and target dependent killing of LYPD1 expressing ovarian cancer cells resulting in efficient in vivo antitumor responses in PBMC reconstituted immune-deficient mice and human CD3 transgenic mouse models. Anti-LYPD1/CD3 TDB is generally well tolerated at high-dose levels in mice, a pharmacologically relevant species, and showed no evidence of toxicity or damage to LYPD1 expressing tissues.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Complexo CD3/imunologia , Neoplasias Ovarianas/tratamento farmacológico , Sequência de Aminoácidos , Animais , Anticorpos Biespecíficos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias Ovarianas/patologia
8.
MAbs ; 13(1): 1862452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33382956

RESUMO

Early success with brentuximab vedotin in treating classical Hodgkin lymphoma spurred an influx of at least 20 monomethyl auristatin E (MMAE) antibody-drug conjugates (ADCs) into clinical trials. While three MMAE-ADCs have been approved, most of these conjugates are no longer being investigated in clinical trials. Some auristatin conjugates show limited or no efficacy at tolerated doses, but even for drugs driving initial remissions, tumor regrowth and metastasis often rapidly occur. Here we describe the development of second-generation therapeutic ADCs targeting Lymphocyte antigen 6E (Ly6E) where the tubulin polymerization inhibitor MMAE (Compound 1) is replaced with DNA-damaging agents intended to drive increased durability of response. Comparison of a seco-cyclopropyl benzoindol-4-one (CBI)-dimer (compound 2) to MMAE showed increased potency, activity across more cell lines, and resistance to efflux by P-glycoprotein, a drug transporter commonly upregulated in tumors. Both anti-Ly6E-CBI and -MMAE conjugates drove single-dose efficacy in xenograft and patient-derived xenograft models, but seco-CBI-dimer conjugates showed reduced tumor outgrowth following multiple weeks of treatment, suggesting that they are less susceptible to developing resistance. In parallel, we explored approaches to optimize the targeting antibody. In contrast to immunization with recombinant Ly6E or Ly6E DNA, immunization with virus-like particles generated a high-affinity anti-Ly6E antibody. Conjugates to this antibody improve efficacy versus a previous clinical candidate both in vitro and in vivo with multiple cytotoxics. Conjugation of compound 2 to the second-generation antibody results in a substantially improved ADC with promising preclinical efficacy.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Superfície/imunologia , Antineoplásicos/imunologia , Imunoconjugados/imunologia , Oligopeptídeos/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos Imunológicos/farmacocinética , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Feminino , Proteínas Ligadas por GPI/imunologia , Células HEK293 , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Camundongos SCID , Ratos Sprague-Dawley , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia
9.
J Pharm Sci ; 109(12): 3690-3696, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32910947

RESUMO

A localized positive charge on IgG (referred to as a "charge patch") shows an adverse effect on pharmacokinetics (PK), so it would seem to be best practice to avoid charge patches during the discovery stage and closely monitor charge interactions during the development process. In certain circumstances, however, charge patches are required for target binding, in which case completely removing charge patches is not feasible. Therefore, quantitative measurement of a charge patch and its impact on PK is critical to the success of therapeutic antibody development. In this article, we generated mutations of a recombinant human antibody (referred to as mAb1) with disrupted charge patches to investigate how charge patches on IgG antibodies impact both target-binding affinity and PK-related factors. We conclude that it is important to modulate the size of the charge patch in order to balance target-binding affinity and PK.


Assuntos
Regiões Determinantes de Complementaridade , Imunoglobulina G , Regiões Determinantes de Complementaridade/genética , Humanos
10.
Mol Cancer Ther ; 19(4): 1052-1058, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32024685

RESUMO

Full-length antibodies lack ideal pharmacokinetic properties for rapid targeted imaging, prompting the pursuit of smaller peptides and fragments. Nevertheless, studying the disposition properties of antibody-based imaging agents can provide critical insight into the pharmacology of their therapeutic counterparts, particularly for those coupled with potent payloads. Here, we evaluate modulation of binding to the neonatal Fc receptor (FcRn) as a protein engineering-based pharmacologic strategy to minimize the overall blood pool background with directly labeled antibodies and undesirable systemic click reaction of radiolabeled tetrazine with circulating pretargeted trans-cyclooctene (TCO)-modified antibodies. Noninvasive SPECT imaging of mice bearing HER2-expressing xenografts was performed both directly (111In-labeled antibody) and indirectly (pretargeted TCO-modified antibody followed by 111In-labeled tetrazine). Pharmacokinetic modulation of antibodies was achieved by two distinct methods: Fc engineering to reduce binding affinity to FcRn, and delayed administration of an antibody that competes with binding to FcRn. Tumor imaging with directly labeled antibodies was feasible in the absence of FcRn binding, rapidly attaining high tumor-to-blood ratios, but accompanied by moderate liver and spleen uptake. Pretargeted imaging of tumors with non-FcRn-binding antibody was also feasible, but systemic click reaction still occurred, albeit at lower levels than with parental antibody. Our findings demonstrate that FcRn binding impairment of full-length IgG antibodies moderately lowers tumor accumulation of radioactivity, and shifts background activity from blood pool to liver and spleen. Furthermore, reduction of FcRn binding did not eliminate systemic click reaction, but yielded greater improvements in tumor-to-blood ratio when imaging with directly labeled antibodies than with pretargeting.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Antígenos de Histocompatibilidade Classe I/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Receptores Fc/metabolismo , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Química Click , Feminino , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos SCID , Receptor ErbB-2/metabolismo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único
11.
Oncotarget ; 10(58): 6234-6244, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31692898

RESUMO

TENB2, a transmembrane proteoglycan protein, is a promising target for antibody drug conjugate (ADC) therapy due to overexpression in human prostate tumors and rapid internalization. We previously characterized how predosing with parental anti-TENB2 monoclonal antibody (mAb) at 1 mg/kg in a patient-derived LuCap77 explant model with high (3+) TENB2 expression could (i) block target-mediated intestinal uptake of tracer (& 0.1 mg/kg) levels of radiolabeled anti-TENB2-monomethyl auristatin E ADC while preserving tumor uptake, and (ii) maintain efficacy relative to ADC alone. Here, we systematically revisit this strategy to evaluate the effects of predosing on tumor uptake and efficacy in LuCap96.1, a low TENB2-expressing (1+) patient-derived model that is more responsive to ADC therapy than LuCap77. Importantly, rather than using tracer (& 0.1 mg/kg) levels, radiolabeled ADC tumor uptake was assessed at 1 mg/kg - one of the doses evaluated in the tumor growth inhibition study - in an effort to bridge tissue distribution (PK) with efficacy (PD). Predosing with mAb up to 1 mg/kg had no effect on efficacy. These findings warrant further investigations to determine whether predosing prior to ADC therapy might improve therapeutic index by preventing ADC disposition and possible toxicological liabilities in antigen-expressing healthy tissues.

12.
Bioconjug Chem ; 30(11): 2782-2789, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31553572

RESUMO

Treatment of ocular diseases associated with neovascularization currently requires frequent intravitreal injections of antivascular endothelial growth factor (anti-VEGF) therapies. Reducing the required frequency of anti-VEGF injections and associated clinical visits may improve patient adherence to the prescribed treatment regimen and improve outcomes. Herein, we explore conjugation of rabbit and fragment antibodies (Fab) to the biopolymer hyaluronic acid (HA) as a half-life modifying strategy, and assess the impact on Fab biophysical properties and vitreal pharmacokinetics. HA-Fab conjugates of three distinct molecular weights and hydrodynamic radii (RH) were assessed for in vivo pharmacokinetic performance relative to unconjugated Fab after intravitreal injection in rabbits. Covalent conjugation to HA did not significantly alter the thermal stability or secondary or tertiary structure, or diminish the potency of the Fab, thereby preserving its pharmacological properties. Conjugation to HA did significantly slow the in vivo clearance of Fab from the rabbit vitreous in an RH-dependent manner. Compared to free Fab (observed vitreal half-life of 2.8 days), HA-Fab conjugates cleared with observed half-lives of 7.6, 10.2, and 18.3 days for 40 kDa, 200 kDa, and 600 kDa HA conjugates, respectively. This work elucidates a possible strategy for long-acting delivery of proteins intended for the treatment of chronic posterior ocular diseases.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Ácido Hialurônico/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Corpo Vítreo/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Humanos , Injeções Intravítreas , Coelhos , Distribuição Tecidual , Corpo Vítreo/imunologia
13.
MAbs ; 11(6): 1122-1138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31122132

RESUMO

IgA antibodies have broad potential as a novel therapeutic platform based on their superior receptor-mediated cytotoxic activity, potent neutralization of pathogens, and ability to transcytose across mucosal barriers via polymeric immunoglobulin receptor (pIgR)-mediated transport, compared to traditional IgG-based drugs. However, the transition of IgA into clinical development has been challenged by complex expression and characterization, as well as rapid serum clearance that is thought to be mediated by glycan receptor scavenging of recombinantly produced IgA monomer bearing incompletely sialylated N-linked glycans. Here, we present a comprehensive biochemical, biophysical, and structural characterization of recombinantly produced monomeric, dimeric and polymeric human IgA. We further explore two strategies to overcome the rapid serum clearance of polymeric IgA: removal of all N-linked glycosylation sites creating an aglycosylated polymeric IgA and engineering in FcRn binding with the generation of a polymeric IgG-IgA Fc fusion. While previous reports and the results presented in this study indicate that glycan-mediated clearance plays a major role for monomeric IgA, systemic clearance of polymeric IgA in mice is predominantly controlled by mechanisms other than glycan receptor clearance, such as pIgR-mediated transcytosis. The developed IgA platform now provides the potential to specifically target pIgR expressing tissues, while maintaining low systemic exposure.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Proteínas Recombinantes de Fusão/imunologia , Animais , Anticorpos Monoclonais Murinos/genética , Cães , Feminino , Glicosilação , Meia-Vida , Humanos , Imunoglobulina A/genética , Imunoglobulina G/genética , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/genética
14.
AAPS J ; 20(6): 107, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30298434

RESUMO

We previously performed a comparative assessment of tissue-level vascular physiological parameters in mice and rats, two of the most commonly utilized species in translational drug development. The present work extends this effort to non-human primates by measuring tissue- and organ-level vascular volumes (Vv), interstitial volumes (Vi), and blood flow rates (Q) in cynomolgus monkeys. These measurements were accomplished by red blood cell labeling, extracellular marker infusion, and rubidium chloride bolus distribution, respectively, the same methods used in previous rodent measurements. In addition, whole-body blood volumes (BV) were determined across species. The results demonstrate that Vv, Vi, and Q, measured using our methods scale approximately by body weight across mouse, rat, and monkey in the tissues considered here, where allometric analysis allowed extrapolation to human parameters. Significant differences were observed between the values determined in this study and those reported in the literature, including Vv in muscle, brain, and skin and Q in muscle, adipose, heart, thymus, and spleen. The impact of these differences for selected tissues was evaluated via sensitivity analysis using a physiologically based pharmacokinetic model. The blood-brain barrier in monkeys was shown to be more impervious to an infused radioactive tracer, indium-111-pentetate, than in mice or rats. The body weight-normalized total BV measured in monkey agreed well with previously measured value in rats but was lower than that in mice. These findings have important implications for the common practice of scaling physiological parameters from rodents to primates in translational pharmacology.


Assuntos
Desenvolvimento de Medicamentos/métodos , Modelos Animais , Pesquisa Farmacêutica/métodos , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Volume Sanguíneo/fisiologia , Barreira Hematoencefálica/metabolismo , Peso Corporal/fisiologia , Feminino , Macaca fascicularis/fisiologia , Masculino , Camundongos/fisiologia , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/farmacocinética , Ratos/fisiologia , Especificidade da Espécie , Distribuição Tecidual
15.
MAbs ; 10(8): 1269-1280, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30199303

RESUMO

Antibody pretargeting is a promising strategy for improving molecular imaging, wherein the separation in time of antibody targeting and radiolabeling can lead to rapid attainment of high contrast, potentially increased sensitivity, and reduced patient radiation exposure. The inverse electron demand Diels-Alder 'click' reaction between trans-cyclooctene (TCO) conjugated antibodies and radiolabeled tetrazines presents an ideal platform for pretargeted imaging due to rapid reaction kinetics, bioorthogonality, and potential for optimization of both slow and fast clearing components. Herein, we evaluated a series of anti-human epidermal growth factor receptor 2 (HER2) pretargeting antibodies containing distinct molar ratios of site-specifically incorporated TCO. The effect of stoichiometry on tissue distribution was assessed for pretargeting TCO-modified antibodies (monitored by 125I) and subsequent accumulation of an 111In-labeled tetrazine in a therapeutically relevant HER2+tumor-bearing mouse model. Single photon emission computed tomography (SPECT) imaging was also employed to assess tumor imaging at various TCO-to-monoclonal antibody (mAb) ratios. Increasing TCO-to-mAb molar ratios correlated with increased in vivo click reaction efficiency evident by increased tumor distribution and systemic exposure of 111In-labeled tetrazines. The pharmacokinetics of TCO-modified antibodies did not vary with stoichiometry. Pretargeted SPECT imaging of HER2-expressing tumors using 111In-labeled tetrazine demonstrated robust click reaction with circulating antibody at ~2 hours and good tumor delineation for both the 2 and 6 TCO-to-mAb ratio variants at 24 hours, consistent with a limited cell-surface pool of pretargeted antibody and benefit from further distribution and internalization. To our knowledge, this represents the first reported systematic analysis of how pretargeted imaging is affected solely by variation in click reaction stoichiometry through site-specific conjugation chemistry.


Assuntos
Anticorpos Monoclonais/química , Química Click/métodos , Imunoconjugados/química , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Linhagem Celular Tumoral , Compostos Heterocíclicos com 1 Anel/química , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Marcação por Isótopo/métodos , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Neoplasias/terapia , Radioimunoterapia/métodos , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Sci Rep ; 8(1): 8239, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844389

RESUMO

Neuregulin 1 (NRG1) is required for development of the central and peripheral nervous system and regulates neurotransmission in the adult. NRG1 and the gene encoding its receptor, ERBB4, are risk genes for schizophrenia, although how alterations in these genes disrupt their function has not been fully established. Studies of knockout and transgenic mice have yielded conflicting results, with both gain and loss of function resulting in similar behavioral and electrophysiological phenotypes. Here, we used high affinity antibodies to NRG1 and ErbB4 to perturb the function of the endogenous proteins in adult mice. Treatment with NRG1 antibodies that block receptor binding caused behavioral alterations associated with schizophrenia, including, hyper-locomotion and impaired pre-pulse inhibition of startle (PPI). Electrophysiological analysis of brain slices from anti-NRG1 treated mice revealed reduced synaptic transmission and enhanced paired-pulse facilitation. In contrast, mice treated with more potent ErbB4 function blocking antibodies did not display behavioral alterations, suggesting a receptor independent mechanism of the anti-NRG1-induced phenotypes. We demonstrate that anti-NRG1 causes accumulation of the full-length transmembrane protein and increases phospho-cofilin levels, which has previously been linked to impaired synaptic transmission, indicating enhancement of non-canonical NRG1 signaling could mediate the CNS effects.


Assuntos
Sistema Nervoso Central/fisiologia , Eletrofisiologia/métodos , Neuregulina-1/metabolismo , Esquizofrenia/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Animais , Anticorpos Bloqueadores/administração & dosagem , Modelos Animais de Doenças , Predisposição Genética para Doença , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neuregulina-1/genética , Neuregulina-1/imunologia , Estabilidade Proteica , Receptor ErbB-4/genética , Receptor ErbB-4/imunologia , Receptor ErbB-4/metabolismo , Risco , Esquizofrenia/genética , Transdução de Sinais , Transmissão Sináptica
17.
Mol Cancer Ther ; 17(4): 776-785, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29339550

RESUMO

Anti-HER2/CD3, a T-cell-dependent bispecific antibody (TDB) construct, induces T-cell-mediated cell death in cancer cells expressing HER2 by cross-linking tumor HER2 with CD3 on cytotoxic T cells, thereby creating a functional cytolytic synapse. TDB design is a very challenging process that requires consideration of multiple parameters. Although therapeutic antibody design strategy is commonly driven by striving for the highest attainable antigen-binding affinity, little is known about how the affinity of each TDB arm can affect the targeting ability of the other arm and the consequent distribution and efficacy. To our knowledge, no distribution studies have been published using preclinical models wherein the T-cell-targeting arm of the TDB is actively bound to T cells. We used a combined approach involving radiochemistry, invasive biodistribution, and noninvasive single-photon emission tomographic (SPECT) imaging to measure TDB distribution and catabolism in transgenic mice with human CD3ε expression on T cells. Using CD3 affinity variants, we assessed the impact of CD3 affinity on short-term pharmacokinetics, tissue distribution, and cellular uptake. Our experimental approach determined the relative effects of (i) CD3 targeting to normal tissues, (ii) HER2 targeting to HER2-expressing tumors, and (iii) relative HER2/CD3 affinity, all as critical drivers for TDB distribution. We observed a strong correlation between CD3 affinity and distribution to T-cell-rich tissues, with higher CD3 affinity reducing systemic exposure and shifting TDB distribution away from tumor to T-cell-containing tissues. These observations have important implications for clinical translation of bispecific antibodies for cancer immunotherapy. Mol Cancer Ther; 17(4); 776-85. ©2018 AACR.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/farmacocinética , Complexo CD3/imunologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Receptor ErbB-2/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Afinidade de Anticorpos , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Imunoterapia , Camundongos , Camundongos Nus , Camundongos Transgênicos , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/patologia , Distribuição Tecidual , Células Tumorais Cultivadas
18.
MAbs ; 9(8): 1379-1388, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28895785

RESUMO

Target receptor levels can influence pharmacokinetics (PK) or pharmacodynamics (PD) of monoclonal antibodies (mAbs), and can affect drug development of this class of molecules. We generated an effector-less humanized bispecific antibody that selectively activates fibroblast growth factor receptor (FGFR)1 and ßKlotho receptor, a FGF21 receptor complex highly expressed in both white and brown adipocytes. The molecule shows cross-species binding with comparable equilibrium binding affinity (Kd) for human, cynomolgus monkey, and mouse FGFR1/ßKlotho. To understand the PK/PD relationship in non-obese and obese animals, we evaluated the adipose tissue distribution of the antibody, serum exposures, and an associated PD marker (high-molecular-weight adiponectin), in both non-obese and obese mice and monkeys. Antibody uptake into fat tissue was found to be higher on a per gram basis in non-obese animals compared to obese animals. Since obesity has been reported to be associated with reduced expression of FGFR1 and ßKlotho receptor in white adipose tissues in mice, our results suggest that the distribution in adipose tissues was influenced by target expression levels. Even so, the overall dose-normalized serum exposures were comparable between non-obese and obese mice and monkeys, suggesting that adipose tissue uptake plays a limited role in overall systemic PK determination. It remains to be determined if and how obesity and receptor expression in humans influence the PK and PD profile of this novel therapeutic candidate.


Assuntos
Tecido Adiposo/metabolismo , Anticorpos Monoclonais/farmacocinética , Avaliação Pré-Clínica de Medicamentos/métodos , Obesidade/metabolismo , Adiponectina/sangue , Adiponectina/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Células CHO , Cricetinae , Cricetulus , Dieta Hiperlipídica/efeitos adversos , Feminino , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Fatores de Crescimento de Fibroblastos/imunologia , Fatores de Crescimento de Fibroblastos/metabolismo , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/imunologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Distribuição Tecidual
19.
MAbs ; 8(3): 593-603, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26918260

RESUMO

MPDL3280A is a human monoclonal antibody that targets programmed cell death-1 ligand 1 (PD-L1), and exerts anti-tumor activity mainly by blocking PD-L1 interaction with programmed cell death-1 (PD-1) and B7.1. It is being investigated as a potential therapy for locally advanced or metastatic malignancies. The purpose of the study reported here was to characterize the pharmacokinetics, pharmacodynamics, tissue distribution and tumor penetration of MPDL3280A and/or a chimeric anti-PD-L1 antibody PRO304397 to help further clinical development. The pharmacokinetics of MPDL3280A in monkeys at 0.5, 5 and 20 mg · kg(-1) and the pharmacokinetics / pharmacodynamics of PRO304397 in mice at 1, 3 10 mg · kg(-1) were determined after a single intravenous dose. Tissue distribution and tumor penetration for radiolabeled PRO304397 in tumor-bearing mouse models were determined. The pharmacokinetics of MPDL3280A and PRO304397 were nonlinear in monkeys and mice, respectively. Complete saturation of PD-L1 in blood in mice was achieved at serum concentrations of PRO304397 above ∼ 0.5 µg · mL(-1). Tissue distribution and tumor penetration studies of PRO304397 in tumor-bearing mice indicated that the minimum tumor interstitial to plasma radioactivity ratio was ∼ 0.3; saturation of target-mediated uptake in non-tumor tissues and desirable exposure in tumors were achieved at higher serum concentrations, and the distribution into tumors was dose-and time-dependent. The biodistribution data indicated that the efficacious dose is mostly likely higher than that estimated based on simple pharmacokinetics/pharmacodynamics in blood. These data also allowed for estimation of the target clinical dose for further development of MPDL3280A.


Assuntos
Anticorpos Monoclonais , Anticorpos Antineoplásicos , Antígeno B7-H1/antagonistas & inibidores , Pontos de Checagem do Ciclo Celular , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Experimentais , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/farmacologia , Anticorpos Antineoplásicos/imunologia , Anticorpos Antineoplásicos/farmacologia , Antígeno B7-H1/imunologia , Células CHO , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/imunologia , Cricetinae , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Macaca fascicularis , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia
20.
Invest Ophthalmol Vis Sci ; 56(11): 6991-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26513505

RESUMO

PURPOSE: In this work, we assessed the ability of fluorophotometry to measure the vitreal pharmacokinetics (PK) of fluorescently-labeled ranibizumab in the rabbit after intravitreal injection. We compared these values to those obtained using enzyme-linked immunosorbent assays (ELISA). Data obtained in this study were also compared to historical ranibizumab ocular PK data, either measured in-house or previously published. METHODS: Three individual in vivo studies were performed in New Zealand White rabbits to assess the feasibility of using fluorophotometry to measure rabbit ocular PK of ranibizumab; explore the dynamic range of dosing fluorescently-labeled ranibizumab; and directly compare ranibizumab concentrations and calculated PK parameters measured by vitreal fluorophotometry to those measured using ELISA. RESULTS: In direct comparisons between fluorophotometry and ELISA, the calculated clearance (CL) values were 0.26 and 0.21 mL/day, the volumes of distribution at steady state (Vss) were 0.80 and 0.94 mL, the half-lives (t1/2) were 3.1 and 2.9 days and the dose normalized areas under the curve (AUC/D) were 4.7 and 3.9 µg·day/mL/µg, respectively. These values fell within the ranges of 0.13 to 0.44 mL/day for CL, 0.5 to 1.8 mL for Vss, 2.8 to 3.5 days for t1/2, and 2.3 to 7.9 µg·day/mL/µg for AUC/D that have been either measured previously in-house or published elsewhere. CONCLUSIONS: Although not suitable for measuring retinal concentrations, fluorophotometry is a valuable, noninvasive method to measure vitreous concentrations of protein therapeutics after intravitreal injection.


Assuntos
Fluorofotometria , Fatores Imunológicos/farmacocinética , Ranibizumab/farmacocinética , Corpo Vítreo/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Meia-Vida , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/análise , Injeções Intravítreas , Masculino , Coelhos , Ranibizumab/administração & dosagem , Ranibizumab/análise , Corpo Vítreo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA