Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant J ; 112(6): 1396-1412, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36310415

RESUMO

Water shortage strongly affects plants' physiological performance. Since tomato (Solanum lycopersicum) non-long shelf-life (nLSL) and long shelf-life (LSL) genotypes differently face water deprivation, we subjected a nLSL and a LSL genotype to four treatments: control (well watering), short-term water deficit stress at 40% field capacity (FC) (ST 40% FC), short-term water deficit stress at 30% FC (ST 30% FC), and short-term water deficit stress at 30% FC followed by recovery (ST 30% FC-Rec). Treatments promoted genotype-dependent elastic adjustments accompanied by distinct photosynthetic responses. While the nLSL genotype largely modified mesophyll conductance (gm ) across treatments, it was kept within a narrow range in the LSL genotype. However, similar gm values were achieved under ST 30% FC conditions. Particularly, modifications in the relative abundance of cell wall components and in sub-cellular anatomic parameters such as the chloroplast surface area exposed to intercellular air space per leaf area (Sc /S) and the cell wall thickness (Tcw ) regulated gm in the LSL genotype. Instead, only changes in foliar structure at the supra-cellular level influenced gm in the nLSL genotype. Even though further experiments testing a larger range of genotypes and treatments would be valuable to support our conclusions, we show that even genotypes of the same species can present different elastic, anatomical, and cell wall composition-mediated mechanisms to regulate gm when subjected to distinct water regimes.


Assuntos
Células do Mesofilo , Solanum lycopersicum , Células do Mesofilo/metabolismo , Solanum lycopersicum/genética , Água/metabolismo , Folhas de Planta/metabolismo , Fotossíntese/genética , Desidratação/metabolismo , Genótipo , Parede Celular/metabolismo , Dióxido de Carbono/metabolismo
2.
Plants (Basel) ; 11(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807705

RESUMO

Recuperation and genetic diversity preservation of local cultivars have acquired a huge interest in viticulture areas worldwide. In the Balearic Islands, most of the old cultivars are only preserved in grapevine germplasm banks, and so far, the sanitary status of these local cultivars has remained unexplored. The aim of this study was to survey and detect the virus incidence of all conserved cultivars in the government Grapevine Germplasm Bank of the Balearic Islands and to promote the sanitary recovery of two important minor cultivars, Argamussa and Gorgollassa. Enzyme-linked immunosorbent assay (ELISA) screenings were performed on 315 vines of 33 local cultivars. It was shown that the local cultivars were highly infected with simple (39.7%) and mixed infections (52.1%) and only 8.25% of them were free from the viruses tested. Grapevine leafroll-associated virus 3 (GLRaV-3) infection was the most common (82%). Moreover, Grapevine fanleaf virus (GFLV) and Grapevine fleck virus (GFkV) were also present with considerable incidence (25.4% and 43.5%, respectively). In addition, two sanitation protocols were used: shoot tip culture (ST) and thermotherapy in combination with shoot tip culture (CT). Virus elimination using only ST was effective to obtain "healthy" vines of cvs. Argamussa and Gorgollassa. It is important to emphasize that the methods described in the current study were rapid and effective in eliminating both GLRaV-3 and GFLV, also in combination.

3.
Plant Sci ; 311: 111015, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34482918

RESUMO

In the current climate change scenario, understanding crops' physiological performance under water shortage is crucial to overcome drought periods. Although the implication of leaf water relations maintaining leaf turgor and stomatal functioning under water deprivation has been suggested, the relationships between photosynthesis and osmotic and elastic adjustments remain misunderstood. Similarly, only few studies in dicotyledonous analysed how changes in cell wall composition affected photosynthesis and leaf water relations under drought. To induce modifications in photosynthesis, leaf water relations and cell wall composition, Hordeum vulgare and Triticum aestivum were subjected to different water regimes: control (CL, full irrigation), moderate and severe water deficit stress (Mod WS and Sev WS, respectively). Water shortage decreased photosynthesis mainly due to stomatal conductance (gs) declines, being accompanied by reduced osmotic potential at full turgor (πo) and increased bulk modulus of elasticity (ε). Whereas both species enhanced pectins when intensifying water deprivation, species-dependent adjustments occurred for cellulose and hemicelluloses. From these results, we showed that πo and ε influenced photosynthesis, particularly, gs. Furthermore, the (Cellulose+Hemicelluloses)/Pectins ratio determined ε and mesophyll conductance (gm) in grasses, presenting the lowest pectins content within angiosperms. Thus, we highlight the relevance of cell wall composition regulating grasses physiology during drought acclimation.


Assuntos
Parede Celular/química , Desidratação/fisiopatologia , Secas , Hordeum/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Triticum/fisiologia , Água/metabolismo , Mudança Climática , Produtos Agrícolas/fisiologia
4.
J Exp Bot ; 72(22): 7863-7875, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34379761

RESUMO

In previous work, we identified that exposure to limited water availability induced changes in cell wall composition of mature Helianthus annuus L. leaves that affected mesophyll conductance to CO2 diffusion (gm). However, it is unclear on which timescale these changes in cell wall composition occurred. Here, we subjected H. annuus to control (i.e. water availability), different levels of short-term water deficit stress (ST), long-term water deficit stress (LT), and long-term water deficit stress followed by gradual recoveries addressed at different timescales (LT-Rec) to evaluate the dynamics of modifications in the main composition of cell wall (cellulose, hemicelluloses, pectins and lignins) affecting photosynthesis. During gradual ST treatments, pectins enhancement was associated with gm decline. However, during LT-Rec, pectins content decreased significantly after only 5 h, while hemicelluloses and lignins amounts changed after 24 h, all being uncoupled from gm. Surprisingly, lignins increased by around 200% compared with control and were related to stomatal conductance to gas diffusion (gs) during LT-Rec. Although we suspect that the accuracy of the protocols to determine cell wall composition should be re-evaluated, we demonstrate for the first time that a highly dynamic cell wall composition turnover differently affects photosynthesis in plants subjected to distinct water regimes.


Assuntos
Helianthus , Dióxido de Carbono/metabolismo , Parede Celular/metabolismo , Células do Mesofilo , Fotossíntese , Folhas de Planta , Água/metabolismo
5.
Physiol Plant ; 173(4): 1914-1925, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34432898

RESUMO

Cell wall thickness (Tcw ) has been proposed as an important anatomical trait that could determine photosynthesis through land plants' phylogeny, bryophytes being the plant group presenting the thickest walls and the lowest photosynthetic rates. Also, it has recently been suggested that cell wall composition may have the potential to influence both thickness and mesophyll conductance (gm ), representing a novel trait that could ultimately affect photosynthesis. However, only a few studies in spermatophytes have demonstrated this issue. In order to explore the role of cell wall composition in determining both Tcw and gm in mosses, we tested six species grown under field conditions in Antarctica. We performed gas exchange and chlorophyll fluorescence measurements, an anatomical characterization, and a quantitative analysis of cell wall main composition (i.e., cellulose, hemicelluloses and pectins) in these six species. We found the photosynthetic rates to vary between the species, and they also presented differences in anatomical characteristics and in cell wall composition. Whilst gm correlated negatively with Tcw and pectins content, a positive relationship between Tcw and pectins emerged, suggesting that pectins could contribute to determine cell wall porosity. Although our results do not allow us to provide conclusive statements, we suggest for the first time that cell wall composition-with pectins playing a key role-could strongly influence Tcw and gm in Antarctic mosses, ultimately defining photosynthesis.


Assuntos
Briófitas , Células do Mesofilo , Regiões Antárticas , Dióxido de Carbono/metabolismo , Parede Celular/metabolismo , Fotossíntese , Folhas de Planta
6.
J Exp Bot ; 72(11): 3971-3986, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33780533

RESUMO

The key role of cell walls in setting mesophyll conductance to CO2 (gm) and, consequently, photosynthesis is reviewed. First, the theoretical properties of cell walls that can affect gm are presented. Then, we focus on cell wall thickness (Tcw) reviewing empirical evidence showing that Tcw varies strongly among species and phylogenetic groups in a way that correlates with gm and photosynthesis; that is, the thicker the mesophyll cell walls, the lower the gm and photosynthesis. Potential interplays of gm, Tcw, dehydration tolerance, and hydraulic properties of leaves are also discussed. Dynamic variations of Tcw in response to the environment and their implications in the regulation of photosynthesis are discussed, and recent evidence suggesting an influence of cell wall composition on gm is presented. We then propose a hypothetical mechanism for the influence of cell walls on photosynthesis, combining the effects of thickness and composition, particularly pectins. Finally, we discuss the prospects for using biotechnology for enhancing photosynthesis by altering cell wall-related genes.


Assuntos
Dióxido de Carbono , Fotossíntese , Dióxido de Carbono/metabolismo , Parede Celular/metabolismo , Células do Mesofilo , Filogenia , Folhas de Planta
7.
Physiol Plant ; 172(3): 1439-1451, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32770751

RESUMO

The cell wall is a complex and dynamic structure that determines plants' performance by constant remodeling of its compounds. Although cellulose is its major load-bearing component, pectins are crucial to determine wall characteristics. Changes in pectin physicochemical properties, due to pectin remodeling enzymes (PRE), induce the rearrangement of cell wall compounds, thus, modifying wall architecture. In this work, we tested for the first time how cell wall dynamics affect photosynthetic properties in Arabidopsis thaliana pectin methylesterase atpme17.2 and pectin acetylesterase atpae11.1 mutants in comparison to wild-type Col-0. Our results showed maintained PRE activities comparing mutants with wild-type and no significant differences in cellulose, but cell wall non-cellulosic neutral sugars contents changed. Particularly, the amount of galacturonic acid (GalA) - which represents to some extent the pectin cell wall proportion - was reduced in the two mutants. Additionally, physiological characterization revealed that mutants presented a decreased net CO2 assimilation (AN ) because of reductions in both stomatal (gs ) and mesophyll conductances (gm ). Thus, our results suggest that atpme17.2 and atpae11.1 cell wall modifications due to genetic alterations could play a significant role in determining photosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Pectinas/metabolismo , Fotossíntese
8.
J Fungi (Basel) ; 6(4)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260901

RESUMO

The interest in the use of microbes as biofertilizers is increasing in recent years as the demands for sustainable cropping systems become more pressing. Although very widely used as biofertilizers, arbuscular mycorrhizal (AM) fungal associations with specific crops have received little attention and knowledge is limited, especially in the case of vineyards. In this study, the AM fungal community associated with soil and roots of a vineyard on Mallorca Island, Spain was characterized by DNA sequencing to resolve the relative importance of grape variety on their diversity and composition. Overall, soil contained a wider AM fungal diversity than plant roots, and this was found at both taxonomic and phylogenetic levels. The major effect on community composition was associated with sample type, either root or soil material, with a significant effect for the variety of the grape. This effect interacted with the spatial distribution of the plants. Such an interaction revealed a hierarchical effect of abiotic and biotic factors in shaping the composition of AM fungal communities. Our results have direct implications for the understanding of plant-fungal assemblages and the potential functional differences across plants in vineyard cropping.

9.
J Exp Bot ; 71(22): 7198-7209, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32905592

RESUMO

Water deprivation affects photosynthesis, leaf anatomy, and cell wall composition. Although the former effects have been widely studied, little is known regarding those changes in cell wall major (cellulose, hemicelluloses, pectin, and lignin) and minor (cell wall-bound phenolics) compounds in plants acclimated to short- and long-term water deprivation and during recovery. In particular, how these cell wall changes impact anatomy and/or photosynthesis, specifically mesophyll conductance to CO2 diffusion (gm), has been scarcely studied. To induce changes in photosynthesis, cell wall composition and anatomy, Helianthus annuus plants were studied under five conditions: (i) control (i.e. without stress) (CL); (ii) long-term water deficit stress (LT); (iii) long-term water deficit stress with recovery (LT-Rec); (iv) short-term water deficit stress (ST); and (v) short-term water deficit stress with recovery (ST-Rec), resulting in a wide photosynthetic range (from 3.80 ± 1.05 µmol CO2 m-2 s-1 to 24.53 ± 0.42 µmol CO2 m-2 s-1). Short- and long-term water deprivation and recovery induced distinctive responses of the examined traits, evidencing a cell wall dynamic turnover during plants acclimation to each condition. In particular, we demonstrated for the first time how gm correlated negatively with lignin and cell wall-bound phenolics and how the (cellulose+hemicelloses)/pectin ratio was linked to cell wall thickness (Tcw) variations.


Assuntos
Helianthus , Células do Mesofilo , Dióxido de Carbono/metabolismo , Parede Celular/metabolismo , Difusão , Fotossíntese , Folhas de Planta , Água/metabolismo , Privação de Água
10.
J Plant Physiol ; 244: 153084, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31812907

RESUMO

Environmental conditions determine plants performance as they shape - among other key factors - leaf features and physiology. However, little is known regarding to the changes occurring in leaf cell wall composition during the acclimation to an environmental stress and, specially, if these changes have an impact on other leaf physiology aspects. In order to induce changes in photosynthesis, leaf water relations and cell wall main components (i.e., cellulose, hemicelluloses and pectins) and see how they co-vary, Vitis vinifera cv. Grenache was tested under four different conditions: (i) non-stress conditions (i.e., control, with high summer temperature and irradiance), (ii) growth chamber conditions, (iii) growth chamber under water stress and (iv) cold growth chamber. Plants developed in growth chambers decreased net CO2 assimilation (AN) and mesophyll conductance (gm) compared to control. Although cold did not change the bulk modulus of elasticity (ε), it decreased in growth chamber conditions and water stress. Control treatment showed the highest values for photosynthetic parameters and ε as well as for leaf structural traits such as leaf mass area (LMA) and leaf density (LD). Whereas cellulose content correlated with photosynthetic parameters, particularly AN and gm, pectins and the amount of alcohol insoluble residue (AIR) - an approximation of the isolated cell wall fraction - correlated with leaf water parameters, specifically, ε. Although preliminary, our results suggest that cell wall modifications due to environmental acclimations can play a significant role in leaf physiology by affecting distinctly photosynthesis and water relations in a manner that might depend on environmental conditions.


Assuntos
Fotossíntese , Folhas de Planta/fisiologia , Vitis/fisiologia , Água/metabolismo , Parede Celular/fisiologia , Estações do Ano , Estresse Fisiológico
11.
Physiol Plant ; 165(4): 746-754, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29885063

RESUMO

Respiration processes are well recognized as fundamental for the plant carbon balance, but little attention has been paid to the relationships among respiration rates, environment and genetic variability. This can be of particular interest to understand the differences in net carbon balances in crops as grapevines. Night respiration (Rn ) and its associated growth (Rg ) and maintenance (Rm ) components were evaluated during leaf expansion in two grapevine cultivars (Tempranillo cv. and Garnacha cv.) that differ in their plant growth pattern and carbon balance. Simultaneously, leaf traits as leaf mass area, nitrogen (N) and carbon (C) content were evaluated in order to relate to the respiratory processes and the leaf growth. The results showed the differences in respiration rates associated with the leaf expansion pattern. Tempranillo developed leaves with higher leaf area and lower dry weight per leaf unit than Garnacha. Although differences between cultivars were observed in terms of growth costs in expanding leaves, the maintenance costs were similar for both cultivars. Also, a significant linear regression was found between respiration rates and N content in expanding and mature leaves. The results indicate that differences in structure and nitrogen content of expanding leaves may lead to respiratory differences between cultivars. These results also demonstrate the importance of respiratory cost components in carbon balance calculations in grapevines.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Vitis/crescimento & desenvolvimento , Vitis/metabolismo , Respiração Celular/fisiologia , Fotossíntese/fisiologia
12.
BMC Bioinformatics ; 19(Suppl 14): 416, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30453874

RESUMO

BACKGROUND: The advances in high-throughput sequencing technologies are allowing more and more de novo assembling of transcriptomes from many new organisms. Some degree of automation and evaluation is required to warrant reproducibility, repetitivity and the selection of the best possible transcriptome. Workflows and pipelines are becoming an absolute requirement for such a purpose, but the issue of assembling evaluation for de novo transcriptomes in organisms lacking a sequenced genome remains unsolved. An automated, reproducible and flexible framework called TransFlow to accomplish this task is described. RESULTS: TransFlow with its five independent modules was designed to build different workflows depending on the nature of the original reads. This architecture enables different combinations of Illumina and Roche/454 sequencing data, and can be extended to other sequencing platforms. Its capabilities are illustrated with the selection of reliable plant reference transcriptomes and the assembling six transcriptomes (three case studies for grapevine leaves, olive tree pollen, and chestnut stem, and other three for haustorium, epiphytic structures and their combination for the phytopathogenic fungus Podosphaera xanthii). Arabidopsis and poplar transcriptomes revealed to be the best references. A common result regarding de novo assemblies is that Illumina paired-end reads of 100 nt in length assembled with OASES can provide reliable transcriptomes, while the contribution of longer reads is noticeable only when they complement a set of short, single-reads. CONCLUSIONS: TransFlow can handle up to 181 different assembling strategies. Evaluation based on principal component analyses allows its self-adaptation to different sets of reads to provide a suitable transcriptome for each combination of reads and assemblers. As a result, each case study has its own behaviour, prioritises evaluation parameters, and gives an objective and automated way for detecting the best transcriptome within a pool of them. Sequencing data type and quantity (preferably several hundred millions of 2×100 nt or longer), assemblers (OASES for Illumina, MIRA4 and EULER-SR reconciled with CAP3 for Roche/454) and strategy (preferably scaffolding with OASES, and probably merging with Roche/454 when available) arise as the most impacting factors.


Assuntos
Análise de Sequência de RNA , Software , Transcriptoma/genética , Pareamento de Bases/genética , Fungos/genética , Perfilação da Expressão Gênica , Plantas/genética , Análise de Componente Principal , Reprodutibilidade dos Testes , Fluxo de Trabalho
13.
J Plant Physiol ; 231: 19-30, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30212658

RESUMO

In the Mediterranean region, grapevines usually deal with drought during their summer growth season. Concurrently, grapevines are hosts to a large number of viruses from which grapevine leafroll associated virus-3 is one of the most widespread and provokes considerable economic losses in many vineyards. However, information concerning grapevine metabolic responses to the combination of drought and viral infection is scarce. Gas-chromatography coupled to mass-spectrometry based metabolite profiling was used in combination with growth analysis, viral loads and gas exchange data to perform an integrative study of the effects of individual and combined stress in two Majorcan grapevine varieties at two experimental years. Metabolic responses of both varieties to the combination of water stress and virus infection were specific and not predicted from the sum of single stress responses. Correlations between respiration, biomass and key metabolites highlight specific adjustments of respiratory and amino acid metabolism possibly underlying the maintenance of carbon balance and growth in grapevines under stress combination.


Assuntos
Respiração Celular/fisiologia , Doenças das Plantas/virologia , Vitis/metabolismo , Clorofila/metabolismo , Closteroviridae , Desidratação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Vitis/crescimento & desenvolvimento , Vitis/fisiologia , Vitis/virologia
14.
Physiol Plant ; 160(2): 171-184, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28044321

RESUMO

Water limitation is one of the major threats affecting grapevine production. Thus, improving water-use efficiency (WUE) is crucial for a sustainable viticulture industry in Mediterranean regions. Under field conditions, water stress (WS) is often combined with viral infections as those are present in major grape-growing areas worldwide. Grapevine leafroll-associated virus 3 (GLRaV-3) is one of the most important viruses affecting grapevines. Indeed, the optimization of water use in a real context of virus infection is an important topic that needs to be understood. In this work, we have focused our attention on determining the interaction of biotic and abiotic stresses on WUE and hydraulic conductance (Kh ) parameters in two white grapevine cultivars (Malvasia de Banyalbufar and Giró Ros). Under well-watered (WW) conditions, virus infection provokes a strong reduction (P < 0.001) in Kpetiole in both cultivars; however, Kleaf was only reduced in Malvasia de Banyalbufar. Moreover, the presence of virus also reduced whole-plant hydraulic conductance (Khplant ) in 2013 and 2014 for Malvasia de Banyalbufar and in 2014 for Giró Ros. Thus, the effect of virus infection on water flow might explain the imposed stomatal limitation. Under WS conditions, the virus effect on Kplant was negligible, because of the bigger effect of WS than virus infection. Whole-plant WUE (WUEWP ) was not affected by the presence of virus neither under WW nor under WS conditions, indicating that plants may adjust their physiology to counteract the virus infection by maintaining a tight stomatal control and by sustaining a balanced carbon change.


Assuntos
Vírus de Plantas/patogenicidade , Vitis/metabolismo , Vitis/virologia , Água/metabolismo , Closteroviridae/patogenicidade , Desidratação , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/virologia
15.
Plant Sci ; 251: 35-43, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27593461

RESUMO

Genetic improvement of crop Water Use Efficiency (WUE) is a general goal because the increasing water scarcity and the trend to a more sustainable agriculture. For grapevines, this subject is relevant and need an urgent response because their wide distribution in semi-arid areas. New cultivars are difficult to introduce in viticulture due to the narrow dependency of consumer appreciation often linked to a certain particular wine taste. Clones of reputed cultivars would presumably be more accepted but little is known on the intra-cultivar genetic variability of the WUE. The present work compares, on the basis of two field assays, the variability of intrinsic water use efficiency (WUEi) in a large collection of cultivars in contrast with a collection of clones of Tempranillo cultivar. The results show that clonal variability of WUEi was around 80% of the inter-cultivar, thus providing a first assessment on the opportunity for clonal selection by WUE. Plotting the WUEi data against stem water potential or stomatal conductance it was possible to identify cultivars and clones out of the confidence intervals of this linear regression thus with significantly higher and lower WUEi values. The present results contribute to open the expectative for a genetic improvement of grapevine WUE.


Assuntos
Variação Genética , Vitis/genética , Água/metabolismo , Agricultura/métodos , Genótipo , Estresse Fisiológico , Vitis/metabolismo
16.
J Plant Physiol ; 196-197: 106-15, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27153513

RESUMO

Among several biotic and abiotic stress combinations, interaction between drought and pathogen is one of the most studied combinations in some crops but still not in grapevine. In the present work, we focused on the interaction effects of biotic (GLRaV-3) and abiotic (drought) stresses on grapevine photosynthetic metabolism on two cultivars (cvs. 'Malvasia de Banyalbufar and Giro-Ros'). Non-infected and GLRaV-3 infected potted plants were compared under water stress conditions (WS) and well-watered (WW) conditions. Under WW condition, the results showed that photosynthesis (AN) in both cultivars was decreased by the presence of GLRaV-3. The stomatal conductance (gs) was the main factor for decreasing AN in Malvasia, meanwhile reductions in Giro-Ros were closely related to decreases in gm. The observed differences in gm between both cultivars might result from variation in their leaf anatomical, Giro-Ros having higher values of gm and leaf porosity (in all treatments). Moderate water deficit resulted in a closure of stomata and a decrease in gm accompanied by a decrease in AN in both cultivars. The maximum velocity of carboxylation (Vcmax) and electron transport rate (Jmax) were also reduced under water stress. Moreover, the combined stress resulted in a reduction of most physiological parameters compared to healthy irrigated plants. However, no considerable differences were found between non-infected and virus infected (GLRaV-3) plants under water stress. Most of the results could be explained by the difference of virus concentration between cultivars and treatments.


Assuntos
Closteroviridae/fisiologia , Secas , Fotossíntese , Vitis/fisiologia , Folhas de Planta/fisiologia , Folhas de Planta/virologia , Espanha , Vitis/genética , Vitis/virologia
17.
Physiol Plant ; 157(4): 442-52, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26926417

RESUMO

Plant defense mechanisms against pathogens result in differential regulation of various processes of primary and secondary metabolism. Imaging techniques, such as fluorescence imaging and thermography, are very valuable tools providing spatial and temporal information about these processes. In this study, effects of Grapevine leafroll-associated virus 3 (GLRaV-3) on grapevine physiology were analyzed in pot-grown asymptomatic plants of the white cultivar Malvasía de Banyalbufar. The virus triggered changes in the activity of photosynthesis and secondary metabolism. There was a decrease in the photorespiratory intermediates glycine and serine in infected plants, possibly as a defense response against the infection. The content of malate, which plays an important role in plant metabolism, also decreased. These results correlate with the increased non-photochemical quenching found in infected plants. On the other hand, the concentration of flavonols (represented by myricetin, kaempferol and quercetin derivatives) and hydroxycinnamic acids (which include derivatives of caffeic acid) increased following infection by the virus. These compounds could be responsible for the increase in multicolor fluorescence F440 (blue fluorescence) and F520 (green fluorescence) on the leaves, and changes in the fluorescence parameters F440/F680, F440/F740, F520/F680, F520/F740 and F680/F740. The combined analysis of chlorophyll fluorescence kinetics and blue-green fluorescence emitted by phenolics could constitute disease signatures allowing the discrimination between GLRaV-3 infected and non-infected plants at very early stage of infection, prior to the development of symptoms.


Assuntos
Closteroviridae/fisiologia , Vitis/metabolismo , Respiração Celular , Fluorescência , Luz , Fotossíntese , Doenças das Plantas/virologia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Folhas de Planta/virologia , Metabolismo Secundário , Vitis/efeitos da radiação , Vitis/virologia
18.
Plant Dis ; 98(3): 395-400, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30708447

RESUMO

Grapevine leafroll ampeloviruses have been recently grouped into two major clades, one for Grapevine leafroll associated virus (GLRaV) 1 and 3 and another one grouping GLRaV-4 and its variants. In order to understand biological factors mediating differential ampelovirus incidences in vineyards, quantitative real-time polymerase chain reactions were performed to assess virus populations in three grapevine varieties in which different infection status were detected: GLRaV-3 + GLRaV-4, GLRaV-3 + GLRaV-4 strain 5, and GLRaV-4 alone. Specific primers based on the RNA-dependent RNA polymerase (RdRp) domains of GLRaV-3, GLRaV-4, and GLRaV-4 strain 5 were used. Absolute and relative quantitations of the three viruses were achieved by normalization of data to the concentration of the endogenous gene actin. In spring, the populations of GLRaV-4 and GLRaV-4 strain 5 were 1.7 × 104 to 5.0 × 105 genomic RNA copies/mg of petiole tissue whereas, for GLRaV-3, values were significantly higher, ranging from 5.6 × 105 and 1.0 × 107 copies mg-1. In autumn, GLRaV-4 and GLRaV-4 strain 5 populations increased significantly, displaying values for genome copies between 4.1 × 105 and 6.3 × 106 copies mg-1, whereas GLRaV-3 populations displayed a less pronounced boost but were still significantly higher, ranging from 4.1 × 106 to 1.6 × 107 copies mg-1. To investigate whether additional viruses may interfere in the quantifications the small RNA populations, vines were analyzed by Ion Torrent high-throughput sequencing. It allowed the identification of additional viruses and viroids, including Grapevine virus A, Hop stunt viroid, Grapevine yellow speckle viroid 1, and Australian grapevine viroid. The significance of these findings is discussed.

19.
J Exp Bot ; 60(8): 2361-77, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19351904

RESUMO

The hybrid Richter-110 (Vitis berlandierixVitis rupestris) has the reputation of being a genotype strongly adapted to drought. A study was performed with plants of R-110 subjected to sustained water-withholding to induce acclimation to two different levels of water stress, followed by rewatering to induce recovery. The goal was to analyse how photosynthesis is regulated during acclimation to water stress and recovery. In particular, the regulation of stomatal conductance (g(s)), mesophyll conductance to CO(2) (g(m)), leaf photochemistry (chlorophyll fluorescence and thermoluminescence), and biochemistry (V(c,max)) were assessed. During water stress, g(s) declined to 0.1 and less than 0.05 mol CO(2) m(-2) s(-1) in moderately and severely water-stressed plants, respectively, and was kept quite constant during an acclimation period of 1-week. Leaf photochemistry proved to be very resistant to the applied water-stress conditions. By contrast, g(m) and V(c,max) were affected by water stress, but they were not kept constant during the acclimation period. g(m) was initially unaffected by water stress, and V(c,max) even increased above control values. However, after several days of acclimation to water stress, both parameters declined below (g(m)) or at (V(c,max)) control values. For the latter two parameters there seemed to be an interaction between water stress and cumulative irradiance, since both recovered to control values after several cloudy days despite water stress. A photosynthesis limitation analysis revealed that diffusional limitations and not biochemical limitations accounted for the observed decline in photosynthesis during water stress and slow recovery after rewatering, both in moderately and severely stressed plants. However, the relative contribution of stomatal (SL) and mesophyll conductance (MCL) limitations changes during acclimation to water stress, from predominant SL early during water stress to similar SL and MCL after acclimation. Finally, photosynthesis recovery after rewatering was mostly limited by SL, since stomatal closure recovered much more slowly than g(m).


Assuntos
Quimera/fisiologia , Fotossíntese , Vitis/fisiologia , Água/metabolismo , Aclimatação , Dióxido de Carbono/metabolismo , Quimera/genética , Secas , Hibridização Genética , Cinética , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/fisiologia , Vitis/química , Vitis/genética
20.
Physiol Plant ; 134(2): 313-23, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18507813

RESUMO

The hybrid Richter-110 (Vitis berlandieri x Vitis rupestris) (R-110) has the reputation of being a genotype strongly adapted to drought. A study was performed with plants of R-110 subjected to water withholding followed by re-watering. The goal was to analyze how stomatal conductance (g(s)) is regulated with respect to different physiological variables under water stress and recovery, as well as how water stress affects adjustments of water use efficiency (WUE) at the leaf level. Water stress induced a substantial stomatal closure and an increase in WUE, which persisted many days after re-watering. The g(s) during water stress was mainly related to the content of ABA in the xylem and partly related to plant hydraulic conductivity but not to leaf water potential. By contrast, low g(s) during re-watering did not correlate with ABA contents and was only related to a sustained decreased hydraulic conductivity. In addition to a complex physiological regulation of stomatal closure, g(s) and rate of transpiration (E) were strongly affected by leaf-to-air vapor pressure deficit (VPD) in a way dependent of the treatment. Interestingly, E increased with increasing VPD in control plants, but decreased with increasing VPD in severely stressed plants. All together, the fine stomatal regulation in R-110 resulted in very high WUE at the leaf level. This genotype is revealed to be very interesting for further studies on the physiological mechanisms leading to regulation of stomatal responsiveness and WUE in response to drought.


Assuntos
Secas , Estômatos de Plantas/fisiologia , Vitis/metabolismo , Vitis/fisiologia , Água/metabolismo , Adaptação Fisiológica/fisiologia , Hibridização Genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Estômatos de Plantas/metabolismo , Transpiração Vegetal/fisiologia , Vitis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA