Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347124

RESUMO

Long-term memories are believed to be encoded by unique transcriptional signatures in the brain. The expression of immediate early genes (IEG) promotes structural and molecular changes required for memory consolidation. Recent evidence has shown that the brain is equipped with mechanisms that not only promote, but actively constrict memory formation. However, it remains unknown whether IEG expression may play a role in memory suppression. Here we uncovered a novel function of the IEG neuronal PAS domain protein 4 (Npas4), as an inducible memory suppressor gene of highly salient aversive experiences. Using a contextual fear conditioning paradigm, we found that low stimulus salience leads to monophasic Npas4 expression, while highly salient learning induces a biphasic expression of Npas4 in the hippocampus. The later phase requires N-methyl-D-aspartate (NMDA) receptor activity and is independent of dopaminergic neurotransmission. Our in vivo pharmacological and genetic manipulation experiments suggested that the later phase of Npas4 expression restricts the consolidation of a fear memory and promote behavioral flexibility, by facilitating fear extinction and the contextual specificity of fear responses. Moreover, immunofluorescence and electrophysiological analysis revealed a concomitant increase in synaptic input from cholecystokinin (CCK)-expressing interneurons. Our results demonstrate how salient experiences evoke unique temporal patterns of IEG expression that fine-tune memory consolidation. Moreover, our study provides evidence for inducible gene expression associated with memory suppression as a possible mechanism to balance the consolidation of highly salient memories, and thereby to evade the formation of maladaptive behavior.

2.
J Neurosci ; 44(7)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38123997

RESUMO

Neurons typically generate action potentials at their axon initial segment based on the integration of synaptic inputs. In many neurons, the axon extends from the soma, equally weighting dendritic inputs. A notable exception is found in a subset of hippocampal pyramidal cells where the axon emerges from a basal dendrite. This structure allows these axon-carrying dendrites (AcDs) a privileged input route. We found that in male mice, such cells in the CA1 region receive stronger excitatory input from the contralateral CA3, compared with those with somatic axon origins. This is supported by a higher count of putative synapses from contralateral CA3 on the AcD. These findings, combined with prior observations of their distinct role in sharp-wave ripple firing, suggest a key role of this neuron subset in coordinating bi-hemispheric hippocampal activity during memory-centric oscillations.


Assuntos
Hipocampo , Células Piramidais , Masculino , Camundongos , Animais , Células Piramidais/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Dendritos/fisiologia , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Região CA1 Hipocampal/fisiologia
4.
Science ; 377(6613): 1448-1452, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36137045

RESUMO

Information processing in neuronal networks involves the recruitment of selected neurons into coordinated spatiotemporal activity patterns. This sparse activation results from widespread synaptic inhibition in conjunction with neuron-specific synaptic excitation. We report the selective recruitment of hippocampal pyramidal cells into patterned network activity. During ripple oscillations in awake mice, spiking is much more likely in cells in which the axon originates from a basal dendrite rather than from the soma. High-resolution recordings in vitro and computer modeling indicate that these spikes are elicited by synaptic input to the axon-carrying dendrite and thus escape perisomatic inhibition. Pyramidal cells with somatic axon origin can be activated during ripple oscillations by blocking their somatic inhibition. The recruitment of neurons into active ensembles is thus determined by axonal morphological features.


Assuntos
Axônios , Dendritos , Potenciais Pós-Sinápticos Inibidores , Células Piramidais , Potenciais de Ação/fisiologia , Animais , Axônios/fisiologia , Simulação por Computador , Dendritos/fisiologia , Camundongos , Células Piramidais/fisiologia
5.
Front Neural Circuits ; 15: 758939, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924964

RESUMO

Behavioral flexibility depends on neuronal plasticity which forms and adapts the central nervous system in an experience-dependent manner. Thus, plasticity depends on interactions between the organism and its environment. A key experimental paradigm for studying this concept is the exposure of rodents to an enriched environment (EE), followed by studying differences to control animals kept under standard conditions (SC). While multiple changes induced by EE have been found at the cellular-molecular and cognitive-behavioral levels, little is known about EE-dependent alterations at the intermediate level of network activity. We, therefore, studied spontaneous network activity in hippocampal slices from mice which had previously experienced EE for 10-15 days. Compared to control animals from standard conditions (SC) and mice with enhanced motor activity (MC) we found several differences in sharp wave-ripple complexes (SPW-R), a memory-related activity pattern. Sharp wave amplitude, unit firing during sharp waves, and the number of superimposed ripple cycles were increased in tissue from the EE group. On the other hand, spiking precision with respect to the ripple oscillations was reduced. Recordings from single pyramidal cells revealed a reduction in synaptic inhibition during SPW-R together with a reduced inhibition-excitation ratio. The number of inhibitory neurons, including parvalbumin-positive interneurons, was unchanged. Altered activation or efficacy of synaptic inhibition may thus underlie changes in memory-related network activity patterns which, in turn, may be important for the cognitive-behavioral effects of EE exposure.


Assuntos
Hipocampo , Células Piramidais , Potenciais de Ação , Animais , Interneurônios , Camundongos , Plasticidade Neuronal , Neurônios
6.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475264

RESUMO

Neurons are highly vulnerable to conditions of hypoxia-ischemia (HI) such as stroke or transient ischemic attacks. Recovery of cognitive and behavioral functions requires re-emergence of coordinated network activity, which, in turn, relies on the well-orchestrated interaction of pyramidal cells (PYRs) and interneurons. We therefore modelled HI in the mouse hippocampus, a particularly vulnerable region showing marked loss of PYR and fast-spiking interneurons (FSIs) after hypoxic-ischemic insults. Transient oxygen-glucose deprivation (OGD) in ex vivo hippocampal slices led to a rapid loss of neuronal activity and spontaneous network oscillations (sharp wave-ripple complexes; SPW-Rs), and to the occurrence of a spreading depolarization. Following reperfusion, both SPW-R and neuronal spiking resumed, but FSI activity remained strongly reduced compared with PYR. Whole-cell recordings in CA1 PYR revealed, however, a similar reduction of both EPSCs and IPSCs, leaving inhibition-excitation (I/E) balance unaltered. At the network level, SPW-R incidence was strongly reduced and the remaining network events showed region-specific changes including reduced ripple energy in CA3 and increased ripple frequency in CA1. Together, our data show that transient hippocampal energy depletion results in severe functional alterations at the cellular and network level. While I/E balance is maintained, synaptic activity, interneuron spiking and coordinated network patterns remain reduced. Such alterations may be network-level correlates of cognitive and functional deficits after cerebral HI.


Assuntos
Glucose , Oxigênio , Animais , Hipocampo , Interneurônios , Camundongos , Células Piramidais
8.
Commun Biol ; 4(1): 59, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420383

RESUMO

The NMDA receptor-mediated Ca2+ signaling during simultaneous pre- and postsynaptic activity is critically involved in synaptic plasticity and thus has a key role in the nervous system. In GRIN2-variant patients alterations of this coincidence detection provoked complex clinical phenotypes, ranging from reduced muscle strength to epileptic seizures and intellectual disability. By using our gene-targeted mouse line (Grin2aN615S), we show that voltage-independent glutamate-gated signaling of GluN2A-containing NMDA receptors is associated with NMDAR-dependent audiogenic seizures due to hyperexcitable midbrain circuits. In contrast, the NMDAR antagonist MK-801-induced c-Fos expression is reduced in the hippocampus. Likewise, the synchronization of theta- and gamma oscillatory activity is lowered during exploration, demonstrating reduced hippocampal activity. This is associated with exploratory hyperactivity and aberrantly increased and dysregulated levels of attention that can interfere with associative learning, in particular when relevant cues and reward outcomes are disconnected in space and time. Together, our findings provide (i) experimental evidence that the inherent voltage-dependent Ca2+ signaling of NMDA receptors is essential for maintaining appropriate responses to sensory stimuli and (ii) a mechanistic explanation for the neurological manifestations seen in the NMDAR-related human disorders with GRIN2 variant-meidiated intellectual disability and focal epilepsy.


Assuntos
Sinalização do Cálcio , Disfunção Cognitiva/genética , Epilepsia Reflexa/genética , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Aprendizagem por Associação , Transtorno do Deficit de Atenção com Hiperatividade/genética , Hipocampo/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Memória Espacial
9.
Neuroscience ; 448: 28-42, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32920043

RESUMO

The morphology of dendritic arbors determines the location, strength and interaction of synaptic inputs. It is therefore important to understand the factors regulating dendritic arborization both during development and in situations of physiological or pathological plasticity. We have recently shown that VEGF-D (Vascular Endothelial Growth Factor D) is required to maintain length and complexity of basal dendrites in mouse hippocampal pyramidal cells. Lack of VEGF-D resulted in long-term memory deficits, suggesting a link between dendritic morphology and cognitive function. Here, we compared the effect of VEGF-D expression on basal versus apical dendrites of CA1 pyramidal cells, as well as its importance for synaptic processing of network oscillations. We report opposing, layer-specific effects of VEGF-D knockdown which resulted in shrinkage of basal and increased complexity of apical dendrites. Synaptic potentials and layer-specific voltage gradients during network oscillations remained, however, unaltered. These findings reveal a high spatial selectivity of VEGF-D effects at the sub-cellular level, and strong homeostatic mechanisms which keep spatially segregated synaptic inputs in a balance.


Assuntos
Células Piramidais , Fator D de Crescimento do Endotélio Vascular , Animais , Dendritos , Regulação para Baixo , Hipocampo , Camundongos
10.
Hippocampus ; 30(10): 1044-1057, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32412680

RESUMO

The rodent hippocampus expresses a variety of neuronal network oscillations depending on the behavioral state of the animal. Locomotion and active exploration are accompanied by theta-nested gamma oscillations while resting states and slow-wave sleep are dominated by intermittent sharp wave-ripple complexes. It is believed that gamma rhythms create a framework for efficient acquisition of information whereas sharp wave-ripples are thought to be involved in consolidation and retrieval of memory. While not strictly mutually exclusive, one of the two patterns usually dominates in a given behavioral state. Here we explore how different input patterns induce either of the two network states, using an optogenetic stimulation approach in hippocampal brain slices of mice. We report that the pattern of the evoked oscillation depends strongly on the initial synchrony of activation of excitatory cells within CA3. Short, synchronous activation favors the emergence of sharp wave-ripple complexes while persistent but less synchronous activity-as typical for sensory input during exploratory behavior-supports the generation of gamma oscillations. This dichotomy is reflected by different degrees of synchrony of excitatory and inhibitory synaptic currents within these two states. Importantly, the induction of these two fundamental network patterns does not depend on the presence of any neuromodulatory transmitter like acetylcholine, but is merely based on a different synchrony in the initial activation pattern.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Ritmo Gama/fisiologia , Hipocampo/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Rede Nervosa/fisiologia , Animais , Hipocampo/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos , Rede Nervosa/química , Optogenética/métodos , Técnicas de Cultura de Órgãos
11.
J Cereb Blood Flow Metab ; 40(12): 2401-2415, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842665

RESUMO

Disturbances of cognitive functions occur rapidly during acute metabolic stress. However, the underlying mechanisms are not fully understood. Cortical gamma oscillations (30-100 Hz) emerging from precise synaptic transmission between excitatory principal neurons and inhibitory interneurons, such as fast-spiking GABAergic basket cells, are associated with higher brain functions, like sensory perception, selective attention and memory formation. We investigated the alterations of cholinergic gamma oscillations at the level of neuronal ensembles in the CA3 region of rat hippocampal slice cultures. We combined electrophysiology, calcium imaging (CamKII.GCaMP6f) and mild metabolic stress that was induced by rotenone, a lipophilic and highly selective inhibitor of complex I in the respiratory chain of mitochondria. The detected pyramidal cell ensembles showing repetitive patterns of activity were highly sensitive to mild metabolic stress. Whereas such synchronised multicellular activity diminished, the overall activity of individual pyramidal cells was unaffected. Additionally, mild metabolic stress had no effect on the rate of action potential generation in fast-spiking neural units. However, the partial disinhibition of slow-spiking neural units suggests that disturbances of ensemble formation likely result from alterations in synaptic inhibition. Our study bridges disturbances on the (multi-)cellular and network level to putative cognitive impairment on the system level.


Assuntos
Disfunção Cognitiva/metabolismo , Ritmo Gama/fisiologia , Hipocampo/metabolismo , Células Piramidais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Disfunção Cognitiva/fisiopatologia , Eletrofisiologia/métodos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ritmo Gama/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Interneurônios/classificação , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Ratos , Ratos Wistar , Rotenona/administração & dosagem , Rotenona/farmacologia , Estresse Fisiológico/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Desacopladores/administração & dosagem , Desacopladores/farmacologia
12.
J Cereb Blood Flow Metab ; 39(5): 859-873, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29099662

RESUMO

Cortical information processing comprises various activity states emerging from timed synaptic excitation and inhibition. However, the underlying energy metabolism is widely unknown. We determined the cerebral metabolic rate of oxygen (CMRO2) along a tissue depth of <0.3 mm in the hippocampal CA3 region during various network activities, including gamma oscillations and sharp wave-ripples that occur during wakefulness and sleep. These physiological states associate with sensory perception and memory formation, and critically depend on perisomatic GABA inhibition. Moreover, we modelled vascular oxygen delivery based on quantitative microvasculature analysis. (1) Local CMRO2 was highest during gamma oscillations (3.4 mM/min), medium during sharp wave-ripples, asynchronous activity and isoflurane application (2.0-1.6 mM/min), and lowest during tetrodotoxin application (1.4 mM/min). (2) Energy expenditure of axonal and synaptic signaling accounted for >50% during gamma oscillations. (3) CMRO2 positively correlated with number and synchronisation of activated synapses, and neural multi-unit activity. (4) The median capillary distance was 44 µm. (5) The vascular oxygen partial pressure of 33 mmHg was needed to sustain oxidative phosphorylation during gamma oscillations. We conclude that gamma oscillations featuring high energetics require a hemodynamic response to match oxygen consumption of respiring mitochondria, and that perisomatic inhibition significantly contributes to the brain energy budget.


Assuntos
Hipocampo/fisiologia , Rede Nervosa/fisiologia , Oxigênio/metabolismo , Potenciais de Ação , Animais , Metabolismo Energético , Hipocampo/irrigação sanguínea , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Rede Nervosa/irrigação sanguínea , Oxigênio/sangue , Transmissão Sináptica
13.
EMBO J ; 36(18): 2770-2789, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28790178

RESUMO

Canonical transient receptor potential (TRPC) channels influence various neuronal functions. Using quantitative high-resolution mass spectrometry, we demonstrate that TRPC1, TRPC4, and TRPC5 assemble into heteromultimers with each other, but not with other TRP family members in the mouse brain and hippocampus. In hippocampal neurons from Trpc1/Trpc4/Trpc5-triple-knockout (Trpc1/4/5-/-) mice, lacking any TRPC1-, TRPC4-, or TRPC5-containing channels, action potential-triggered excitatory postsynaptic currents (EPSCs) were significantly reduced, whereas frequency, amplitude, and kinetics of quantal miniature EPSC signaling remained unchanged. Likewise, evoked postsynaptic responses in hippocampal slice recordings and transient potentiation after tetanic stimulation were decreased. In vivo, Trpc1/4/5-/- mice displayed impaired cross-frequency coupling in hippocampal networks and deficits in spatial working memory, while spatial reference memory was unaltered. Trpc1/4/5-/- animals also exhibited deficiencies in adapting to a new challenge in a relearning task. Our results indicate the contribution of heteromultimeric channels from TRPC1, TRPC4, and TRPC5 subunits to the regulation of mechanisms underlying spatial working memory and flexible relearning by facilitating proper synaptic transmission in hippocampal neurons.


Assuntos
Hipocampo/fisiologia , Memória de Curto Prazo , Multimerização Proteica , Transmissão Sináptica , Canais de Cátion TRPC/metabolismo , Animais , Técnicas de Inativação de Genes , Hipocampo/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Knockout , Canais de Cátion TRPC/genética
14.
Eur J Neurosci ; 44(11): 2885-2898, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27717106

RESUMO

The hypothalamic neuropeptide oxytocin (OT) controls childbirth and lactation, is involved in social behaviors, plays a role in various psychiatric disorders, and has effects on learning and memory. Although behavioral effects of OT have been extensively studied, much less is known about its effects on neuronal and network activity patterns. Here, we investigate the effect of OT on two major patterns of hippocampal network activity in mouse hippocampal slices. We studied different in vitro models of gamma-frequency oscillations and sharp wave-ripple complexes (SPW-R), two patterns implicated in spatial memory formation and memory consolidation respectively. Strikingly, we found a profound difference of OT on these distinct, mutually exclusive activity patterns. While gamma oscillations where not affected by the activation of hippocampal OT receptors, SPW-R were potently and rapidly suppressed. Interestingly, the temporal precision of oscillation-coupled spikes was enhanced at the same time. Thus, OT exerts strongly different modulatory effects on different network patterns, most likely by inhibition of different sets of inhibitory interneurons. The observed dichotomy between gamma and SPW-R oscillations may have profound effects on the behavioral and cognitive effects of OT which are relevant to cognitive processes and to psychiatric diseases.


Assuntos
Ritmo Gama , Hipocampo/fisiologia , Ocitocina/farmacologia , Animais , Potenciais Evocados , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Ocitocina/metabolismo , Memória Espacial
15.
Hippocampus ; 26(12): 1493-1508, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27479916

RESUMO

The entorhinal cortex (EC) is a critical component of the medial temporal lobe (MTL) memory system. Local networks within the MTL express a variety of state-dependent network oscillations that are believed to organize neuronal activity during memory formation. The peculiar pattern of sharp wave-ripple complexes (SPW-R) entrains neurons by a very fast oscillation at ∼200 Hz in the hippocampal areas CA3 and CA1 and then propagates through the "output loop" into the EC. The precise mechanisms of SPW-R propagation and the resulting cellular input patterns in the mEC are, however, largely unknown. We therefore investigated the activity of layer V (LV) principal neurons of the medial EC (mEC) during SPW-R oscillations in horizontal mouse brain slices. Intracellular recordings in the mEC were combined with extracellular monitoring of propagating network activity. SPW-R in CA1 were regularly followed by negative field potential deflections in the mEC. Propagation of SPW-R activity from CA1 to the mEC was mostly monosynaptic and excitatory, such that synaptic input to mEC LV neurons directly reflected unit activity in CA1. Comparison with propagating network activity from CA3 to CA1 revealed a similar role of excitatory long-range connections for both regions. However, SPW-R-induced activity in CA1 involved strong recruitment of rhythmic synaptic inhibition and corresponding fast field oscillations, in contrast to the mEC. These differences between features of propagating SPW-R emphasize the differential processing of network activity by each local network of the hippocampal output loop. © 2016 Wiley Periodicals, Inc.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Córtex Entorrinal/fisiologia , Neurônios/fisiologia , Animais , Ondas Encefálicas/efeitos dos fármacos , Ondas Encefálicas/fisiologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/efeitos dos fármacos , Córtex Entorrinal/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Técnicas de Cultura de Tecidos
16.
J Neurosci ; 36(32): 8356-71, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27511009

RESUMO

UNLABELLED: Acute cerebral ischemia and chronic neurovascular diseases share various common mechanisms with neurodegenerative diseases, such as disturbed cellular calcium and energy homeostasis and accumulation of toxic metabolites. A link between these conditions may be constituted by amyloid precursor protein (APP), which plays a pivotal role in the pathogenesis of Alzheimer's disease, but has also been associated with the response to acute hypoxia and regulation of calcium homeostasis. We therefore studied hypoxia-induced loss of function and recovery upon reoxygenation in hippocampal slices of mice lacking APP (APP(-/-)) or selectively expressing its soluble extracellular domain (APPsα-KI). Transient hypoxia disrupted electrical activity at the network and cellular level. In mice lacking APP, these impairments were significantly more severe, showing increased rise of intracellular calcium, faster loss of function, and higher incidence of spreading depression. Likewise, functional recovery upon reoxygenation was much slower and less complete than in controls. Most of these deficits were rescued by selective expression of the soluble extracellular fragment APPsα, or by pharmacological block of L-type calcium channels. We conclude that APP supports neuronal resistance toward acute hypoxia. This effect is mediated by the secreted APPsα-domain and involves L-type calcium channels. SIGNIFICANCE STATEMENT: Amyloid precursor protein (APP) is involved in the pathophysiology of Alzheimer's disease, but its normal function in the brain remains elusive. Here, we describe a neuroprotective role of the protein in acute hypoxia. Functional recovery of mouse hippocampal networks after transient reduction of oxygen supply was strongly impaired in animals lacking APP. Most protective effects are mediated by the soluble extracellular fragment APPsα and involve L-type calcium channels. Thus, APP contributes to calcium homeostasis in situations of metabolic stress. This finding may shed light on the physiological function of APP and may be important for understanding mechanisms of neurodegenerative diseases.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Canais de Cálcio Tipo L/metabolismo , Hipóxia/patologia , Rede Nervosa/fisiologia , Neurônios/metabolismo , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Agonistas dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Potenciais Evocados/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/efeitos dos fármacos , Nifedipino/farmacologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-26041998

RESUMO

Memory formation is associated with the generation of transiently stable neuronal assemblies. In hippocampal networks, such groups of functionally coupled neurons express highly ordered spatiotemporal activity patterns which are coordinated by local network oscillations. One of these patterns, sharp wave-ripple complexes (SPW-R), repetitively activates previously established groups of memory-encoding neurons, thereby supporting memory consolidation. This function implies that repetition of specific SPW-R induces plastic changes which render the underlying neuronal assemblies more stable. We modeled this repetitive activation in an in vitro model of SPW-R in mouse hippocampal slices. Weak electrical stimulation upstream of the CA3-CA1 networks reliably induced SPW-R of stereotypic waveform, thus representing re-activation of similar neuronal activity patterns. Frequent repetition of these patterns (100 times) reduced the variance of both, evoked and spontaneous SPW-R waveforms, indicating stabilization of pre-existing assemblies. These effects were most pronounced in the CA1 subfield and depended on the timing of stimulation relative to spontaneous SPW-R. Additionally, plasticity of SPW-R was blocked by application of a NMDA receptor antagonist, suggesting a role for associative synaptic plasticity in this process. Thus, repetitive activation of specific patterns of SPW-R causes stabilization of memory-related networks.


Assuntos
Potenciais de Ação/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Biofísica , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Análise de Componente Principal , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores de Tempo , Valina/análogos & derivados , Valina/farmacologia
18.
Front Neural Circuits ; 8: 103, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25202239

RESUMO

The mammalian hippocampus expresses highly organized patterns of neuronal activity which form a neuronal correlate of spatial memories. These memory-encoding neuronal ensembles form on top of different network oscillations which entrain neurons in a state- and experience-dependent manner. The mechanisms underlying activation, timing and selection of participating neurons are incompletely understood. Here we studied the synaptic mechanisms underlying one prominent network pattern called sharp wave-ripple complexes (SPW-R) which are involved in memory consolidation during sleep. We recorded SPW-R with extracellular electrodes along the different layers of area CA1 in mouse hippocampal slices. Contribution of glutamatergic excitation and GABAergic inhibition, respectively, was probed by local application of receptor antagonists into s. radiatum, pyramidale and oriens. Laminar profiles of field potentials show that GABAergic potentials contribute substantially to sharp waves and superimposed ripple oscillations in s. pyramidale. Inhibitory inputs to s. pyramidale and s. oriens are crucial for action potential timing by ripple oscillations, as revealed by multiunit-recordings in the pyramidal cell layer. Glutamatergic afferents, on the other hand, contribute to sharp waves in s. radiatum where they also evoke a fast oscillation at ~200 Hz. Surprisingly, field ripples in s. radiatum are slightly slower than ripples in s. pyramidale, resulting in a systematic shift between dendritic and somatic oscillations. This complex interplay between dendritic excitation and perisomatic inhibition may be responsible for the precise timing of discharge probability during the time course of SPW-R. Together, our data illustrate a complementary role of spatially confined excitatory and inhibitory transmission during highly ordered network patterns in the hippocampus.


Assuntos
Potenciais de Ação/fisiologia , Ácido Glutâmico/metabolismo , Hipocampo/fisiologia , Neurônios/metabolismo , Ácido gama-Aminobutírico/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Relógios Biológicos/efeitos dos fármacos , Relógios Biológicos/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Hipocampo/citologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Piridazinas/farmacologia
19.
Neuron ; 83(6): 1418-30, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25199704

RESUMO

Neuronal processing is classically conceptualized as dendritic input, somatic integration, and axonal output. The axon initial segment, the proposed site of action potential generation, usually emanates directly from the soma. However, we found that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma. This morphology is particularly enriched in central CA1, the principal hippocampal output area. Multiphoton glutamate uncaging revealed that input onto the axon-carrying dendrites (AcDs) was more efficient in eliciting action potential output than input onto regular basal dendrites. First, synaptic input onto AcDs generates action potentials with lower activation thresholds compared with regular dendrites. Second, AcDs are intrinsically more excitable, generating dendritic spikes with higher probability and greater strength. Thus, axon-carrying dendrites constitute a privileged channel for excitatory synaptic input in a subset of cortical pyramidal cells.


Assuntos
Axônios/fisiologia , Dendritos/fisiologia , Hipocampo/fisiologia , Células Piramidais/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Animais , Axônios/ultraestrutura , Simulação por Computador , Dendritos/ultraestrutura , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipocampo/ultraestrutura , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Modelos Neurológicos , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Células Piramidais/ultraestrutura , Ratos , Ratos Wistar
20.
Neuroimage ; 94: 239-249, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24650598

RESUMO

Hippocampal activity is characterized by the coordinated firing of a subset of neurons. Such neuronal ensembles can either be driven by external stimuli to form new memory traces or be reactivated by intrinsic mechanisms to reactivate and consolidate old memories. Hippocampal network oscillations orchestrate this coherent activity. One key question is how the topology, i.e. the functional connectivity of neuronal networks supports their desired function. Recently, this has been addressed by characterizing the intrinsic properties for the highly recurrently connected CA3 region using organotypic slice cultures and Ca(2+) imaging. In the present study, we aimed to determine the properties of CA1 hippocampal ensembles at high temporal and multiple single cell resolution. Thus, we performed Ca(2+) imaging using the chemical fluorescent Ca(2+) indicator Oregon Green BAPTA 1-AM. To achieve most physiological conditions, we used acute hippocampal slices that were recorded in a so-called interface chamber. To faithfully reconstruct firing patterns of multiple neurons in the field of view, we optimized deconvolution-based detection of action potential associated Ca(2+) events. Our approach outperformed currently available detection algorithms by its sensitivity and robustness. In combination with advanced network analysis, we found that acute hippocampal slices contain a median of 11 CA1 neuronal ensembles with a median size of 4 neurons. This apparently low number of neurons is likely due to the confocal imaging acquisition and therefore yields a lower limit. The distribution of ensemble sizes was compatible with a scale-free topology, as far as can be judged from data with small cell numbers. Interestingly, cells were more tightly clustered in large ensembles than in smaller groups. Together, our data show that spatiotemporal activity patterns of hippocampal neuronal ensembles can be reliably detected with deconvolution-based imaging techniques in mouse hippocampal slices. The here presented techniques are fully applicable to similar studies of distributed optical measurements of neuronal activity (in vivo), where signal-to-noise ratio is critical.


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Imagens com Corantes Sensíveis à Voltagem/métodos , Compostos de Anilina/farmacocinética , Animais , Relógios Biológicos/fisiologia , Mapeamento Encefálico/métodos , Células Cultivadas , Fluoresceínas/farmacocinética , Aumento da Imagem/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA