Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 623(7985): 71-76, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37604186

RESUMO

Electrochemical synthesis can provide more sustainable routes to industrial chemicals1-3. Electrosynthetic oxidations may often be performed 'reagent-free', generating hydrogen (H2) derived from the substrate as the sole by-product at the counter electrode. Electrosynthetic reductions, however, require an external source of electrons. Sacrificial metal anodes are commonly used for small-scale applications4, but more sustainable options are needed at larger scale. Anodic water oxidation is an especially appealing option1,5,6, but many reductions require anhydrous, air-free reaction conditions. In such cases, H2 represents an ideal alternative, motivating the growing interest in the electrochemical hydrogen oxidation reaction (HOR) under non-aqueous conditions7-12. Here we report a mediated H2 anode that achieves indirect electrochemical oxidation of H2 by pairing thermal catalytic hydrogenation of an anthraquinone mediator with electrochemical oxidation of the anthrahydroquinone. This quinone-mediated H2 anode is used to support nickel-catalysed cross-electrophile coupling (XEC), a reaction class gaining widespread adoption in the pharmaceutical industry13-15. Initial validation of this method in small-scale batch reactions is followed by adaptation to a recirculating flow reactor that enables hectogram-scale synthesis of a pharmaceutical intermediate. The mediated H2 anode technology disclosed here offers a general strategy to support H2-driven electrosynthetic reductions.

2.
J Org Chem ; 87(4): 2055-2062, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-34590859

RESUMO

A detailed mechanistic understanding of a benzylic photobromination en route to belzutifan (MK-6482, a small molecule for the treatment of renal cell carcinoma associated with von Hippel-Lindau syndrome) has been achieved using in situ LED-NMR spectroscopy in conjunction with kinetic analysis. Two distinct mechanisms of overbromination, namely, the ionic and radical pathways, have been revealed by this study. The behavior of the major reaction species, including reactants, intermediates, products, and side products, has been elucidated. Comprehensive understanding of both pathways informed and enabled mitigation of a major process risk: a sudden product decomposition. Detailed knowledge of the processes occurring during the reaction and their potential liabilities enabled the development of a robust photochemical continuous flow process implemented for commercial manufacturing.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Doença de von Hippel-Lindau , Carcinoma de Células Renais/complicações , Carcinoma de Células Renais/patologia , Humanos , Neoplasias Renais/complicações , Neoplasias Renais/patologia , Cinética , Espectroscopia de Ressonância Magnética , Doença de von Hippel-Lindau/complicações
3.
Chemistry ; 25(1): 26-42, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30063101

RESUMO

In the last decade, visible-light photoredox catalysis has emerged as a powerful strategy to enable novel transformations in organic synthesis. Owing to mild reaction conditions (i.e., room temperature, use of visible light) and high functional-group tolerance, photoredox catalysis could represent an ideal strategy for chemoselective biomolecule modification. Indeed, a recent trend in photoredox catalysis is its application to the development of novel methodologies for amino acid modification. Herein, an up-to-date overview of photocatalytic methodologies for the modification of single amino acids, peptides, and proteins is provided. The advantages offered by photoredox catalysis and its suitability in the development of novel biocompatible methodologies are described. In addition, a brief consideration of the current limitations of photocatalytic approaches, as well as future challenges to be addressed, are discussed.


Assuntos
Aminoácidos/química , Luz , Peptídeos/química , Proteínas/química , Alanina/análogos & derivados , Alanina/química , Aminoácidos/metabolismo , Catálise , Cisteína/química , Metionina/química , Oxirredução , Peptídeos/metabolismo , Proteínas/metabolismo , Triptofano/química
4.
Angew Chem Int Ed Engl ; 57(35): 11278-11282, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-29992682

RESUMO

Herein, we report the first fully automated continuous-flow platform for fluorescence quenching studies and Stern-Volmer analysis. All the components of the platform were automated and controlled by a self-written Python script. A user-friendly software allows even inexperienced operators to perform automated screening of novel quenchers or Stern-Volmer analysis, thus accelerating and facilitating both reaction discovery and mechanistic studies. The operational simplicity of our system affords a time and labor reduction over batch methods while increasing the accuracy and reproducibility of the data produced. Finally, the applicability of our platform is elucidated through relevant case studies.

5.
Angew Chem Int Ed Engl ; 56(41): 12702-12707, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28805276

RESUMO

A mild visible-light-mediated strategy for cysteine arylation is presented. The method relies on the use of eosin Y as a metal-free photocatalyst and aryldiazonium salts as arylating agents. The reaction can be significantly accelerated in a microflow reactor, whilst allowing the in situ formation of the required diazonium salts. The batch and flow protocol described herein can be applied to obtain a broad series of arylated cysteine derivatives and arylated cysteine-containing dipeptides. Moreover, the method was applied to the chemoselective arylation of a model peptide in biocompatible reaction conditions (room temperature, phosphate-buffered saline (PBS) buffer) within a short reaction time.

6.
J Org Chem ; 81(16): 7301-7, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27257687

RESUMO

We report a visible light-induced trifluoromethylation and perfluoroalkylation for cysteine conjugation using Ru(bpy)3(2+) as photocatalyst and inexpensive RFI as coupling partner. The protocol allows the introduction of a variety of perfluoro alkyl groups (C1-C10) and a CF2COOEt moiety. The reaction is high yielding (56-94% yield) and fast (2 h in batch, 12 examples). Process intensification in a photomicroreactor accelerated the reaction (5 min reaction time) and increased the yields (8 examples). Quantum yield investigations support a radical chain mechanism.

7.
ChemSusChem ; 9(14): 1781-5, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27329945

RESUMO

A mild and practical method for the preparation of disulfides through visible-light-induced photocatalytic aerobic oxidation of thiols has been developed. The method involves the use of TiO2 as a heterogeneous photocatalyst. The catalyst's high stability and recyclability makes this method highly practical. The reaction can be substantially accelerated in a continuous-flow packed-bed reactor, which enables a safe and reliable scale-up of the reaction conditions. The batch and flow protocol described herein can be applied to a diverse set of thiol substrates for the preparation of homo- and hetero-dimerized disulfides. Furthermore, biocompatible reaction conditions (i.e., room temperature, visible light, neutral buffer solution, and no additional base) have been developed, which permits the rapid and chemoselective modification of densely functionalized peptide substrates without recourse to complex purification steps.


Assuntos
Dissulfetos/química , Luz , Processos Fotoquímicos , Titânio/química , Reatores Biológicos , Catálise
8.
Chem Rev ; 116(17): 10276-341, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-26935706

RESUMO

Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.


Assuntos
Compostos Orgânicos/síntese química , Processos Fotoquímicos , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA