Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 201: 116271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513604

RESUMO

The Eastern Tropical and South-Eastern Pacific region is of global biodiversity importance. At COP26, the governments of Costa Rica, Panama, Colombia, and Ecuador committed to the expansion of existing MPAs to create a new Mega MPA, safeguarding the Eastern Tropical Pacific Marine Corridor. It offers a profound step forward in conservation efforts but is not specifically designed to protect against the more diffuse anthropogenic threats, such as plastic pollution. We combine published data with our own unpublished records to assess the abundance and distribution of plastic pollution in the region. Macro- and microplastic concentrations varied markedly and were not significantly different when comparing areas inside and outside existing MPA boundaries. These findings highlight the diffuse and complex nature of plastic pollution and its ubiquitous presence across MPA boundaries. Understanding the sources and drivers of plastic pollution in the region is key to developing effective solutions.


Assuntos
Conservação dos Recursos Naturais , Plásticos , Biodiversidade , Poluição Ambiental , Microplásticos
2.
Sci Total Environ ; 922: 171282, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38412875

RESUMO

The pervasive use of plastic in modern society has led to plastic litter becoming ubiquitous within the ocean. Land-based sources of plastic litter are thought to account for the majority of plastic pollution in the marine environment, with plastic bags, bottles, wrappers, food containers and cutlery among the most common items found. In the marine environment, plastic is a transboundary pollutant, with the potential to cause damage far beyond the political borders from where it originated, making the management of this global pollutant particularly complex. In this study, the risks of land-derived plastic litter (LDPL) to major groups of marine megafauna - seabirds, cetaceans, pinnipeds, elasmobranchs, turtles, sirenians, tuna and billfish - and a selection of productive and biodiverse biogenic habitats - coral reefs, mangroves, seagrass, saltmarsh and kelp beds - were analysed using a Spatial Risk Assessment approach. The approach combines metrics for vulnerability (mechanism of harm for megafauna group or habitat), hazard (plastic abundance) and exposure (distribution of group or habitat). Several potential high-risk zones (HRZs) across the North Atlantic were highlighted, including the Azores, the UK, the French and US Atlantic coasts, and the US Gulf of Mexico. Whilst much of the modelled LDPL driving risk in the UK originated from domestic sources, in other HRZs, such as the Azores archipelago and the US Gulf of Mexico, plastic originated almost exclusively from external (non-domestic) sources. LDPL from Caribbean islands - some of the largest generators of marine plastic pollution in the dataset of river plastic emissions used in the study - was noted as a significant input to HRZs across both sides of the Atlantic. These findings highlight the potential of Spatial Risk Assessment analyses to determine the location of HRZs and understand where plastic debris monitoring and management should be prioritised, enabling more efficient deployment of interventions and mitigation measures.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais , Plásticos , Ecossistema , Poluição Ambiental , Resíduos/análise
3.
Mar Pollut Bull ; 194(Pt B): 115314, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37506480

RESUMO

Citizen science is now commonly employed to collect data on plastic pollution and is recognised as a valuable tool for furthering our understanding of the issue. Few studies, however, use citizen science to gather information on water-borne plastic debris. Here, citizen scientists adopted a globally standardised methodology to sample the sea-surface for small (1-5 mm) floating plastic debris off the Cornish coast (UK). Twenty-eight trawls were conducted along five routes, intersecting two Marine Protected Areas. Of the 509 putative plastic items, fragments were most common (64 %), then line (19 %), foam (7 %), film (6 %), and pellets (4 %). Fourier-transform infrared spectroscopy identified the most common polymer type as polyethylene (31 %), then nylon (12 %), polypropylene (8 %), polyamide (5 %) and polystyrene (3 %). This study provides the first globally comparative baseline of floating plastic debris for the region (mean: 8512 items km-2), whilst contributing to an international dataset aimed at understanding plastic abundance and distribution worldwide.


Assuntos
Ciência do Cidadão , Poluentes Químicos da Água , Plásticos , Poluentes Químicos da Água/análise , Resíduos/análise , Monitoramento Ambiental/métodos , Nylons , Reino Unido
4.
Sci Total Environ ; 831: 154886, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35364160

RESUMO

Some of the highest microplastic concentrations in marine environments have been reported from the Fram Strait in the Arctic. This region supports a diverse ecosystem dependent on high concentrations of zooplankton at the base of the food web. Zooplankton samples were collected during research cruises using Bongo and MOCNESS nets in the boreal summers of 2018 and 2019. Using FTIR scanning spectroscopy in combination with an automated polymer identification approach, we show that all five species of Arctic zooplankton investigated had ingested microplastics. Amphipod species, found in surface waters or closely associated with sea ice, had ingested significantly more microplastic per individual (Themisto libellula: 1.8, Themisto abyssorrum: 1, Apherusa glacialis: 1) than copepod species (Calanus hyperboreus: 0.21, Calanus glacialis/finmarchicus: 0.01). The majority of microplastics ingested were below 50 µm in size, all were fragments and several different polymer types were present. We quantified microplastics in water samples collected at six of the same stations as the Calanus using an underway sampling system (inlet at 6.5 m water depth). Fragments of several polymer types and anthropogenic cellulosic fibres were present, with an average concentration of 7 microplastic particles (MP) L-1 (0-18.5 MP L-1). In comparison to the water samples, those microplastics found ingested by zooplankton were significantly smaller, highlighting that the smaller-sized microplastics were being selected for by the zooplankton. High levels of microplastic ingestion in zooplankton have been associated with negative effects on growth, development, and fecundity. As Arctic zooplankton only have a short window of biological productivity, any negative effect could have broad consequences. As global plastic consumption continues to increase and climate change continues to reduce sea ice cover, releasing ice-bound microplastics and leaving ice free areas open to exploitation, the Arctic could be exposed to further plastic pollution which could place additional strain on this fragile ecosystem.


Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Regiões Árticas , Ingestão de Alimentos , Ecossistema , Monitoramento Ambiental , Microplásticos , Plásticos , Água , Poluentes Químicos da Água/análise , Zooplâncton
5.
Environ Sci Technol ; 54(19): 12024-12033, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32927944

RESUMO

The underlying mechanisms that influence microplastic ingestion in marine zooplankton remain poorly understood. Here, we investigate how microplastics of a variety of shapes (bead, fiber, and fragment), in combination with the algal-derived infochemicals dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP), affect the ingestion rate of microplastics in three species of zooplankton, the copepods Calanus helgolandicus and Acartia tonsa and larvae of the European lobster Homarus gammarus. We show that shape affects microplastic bioavailability to different species of zooplankton, with each species ingesting significantly more of a certain shape: C. helgolandicus-fragments (P < 0.05); A. tonsa-fibers (P < 0.01); H. gammarus larvae-beads (P < 0.05). Thus, different feeding strategies between species may affect shape selectivity. Our results also showed significantly increased ingestion rates by C. helgolandicus on all microplastics that were infused with DMS (P < 0.01) and by H. gammarus larvae and A. tonsa on DMS-infused fibers and fragments (P < 0.05). By using a range of more environmentally relevant microplastics, our findings highlight how the feeding strategies of different zooplankton species may influence their susceptibility to microplastic ingestion. Furthermore, our novel study suggests that species reliant on chemosensory cues to locate their prey may be at an increased risk of ingesting aged microplastics in the marine environment.


Assuntos
Poluentes Químicos da Água , Zooplâncton , Animais , Disponibilidade Biológica , Monitoramento Ambiental , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
6.
Environ Pollut ; 245: 98-110, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30415037

RESUMO

Microplastics are abundant and widespread in the marine environment. They are a contaminant of global environmental and economic concern. Due to their small size a wide range of marine species, including zooplankton can ingest them. Research has shown that microplastics are readily ingested by several zooplankton taxa, with associated negative impacts on biological processes. Zooplankton is a crucial food source for many secondary consumers, consequently this represents a route whereby microplastic could enter the food web and transfer up the trophic levels. In this review we aim to: 1) evaluate the current knowledge base regarding microplastic ingestion by zooplankton in both the laboratory and the field; and 2) summarise the factors which contribute to the bioavailability of microplastics to zooplankton. Current literature shows that microplastic ingestion has been recorded in 39 zooplankton species from 28 taxonomic orders including holo- and meroplanktonic species. The majority of studies occurred under laboratory conditions and negative effects were reported in ten studies (45%) demonstrating effects on feeding behaviour, growth, development, reproduction and lifespan. In contrast, three studies (14%) reported no negative effects from microplastic ingestion. Several physical and biological factors can influence the bioavailability of microplastics to zooplankton, such as size, shape, age and abundance. We identified that microplastics used in experiments are often different to those quantified in the marine environment, particularly in terms of concentration, shape, type and age. We therefore suggest that future research should include microplastics that are more representative of those found in the marine environment at relevant concentrations. Additionally, investigating the effects of microplastic ingestion on a broader range of zooplankton species and life stages, will help to answer key knowledge gaps regarding the effect of microplastic on recruitment, species populations and ultimately broader economic consequences such as impacts on shell- and finfish stocks.


Assuntos
Monitoramento Ambiental , Cadeia Alimentar , Plásticos/análise , Poluentes Químicos da Água/análise , Zooplâncton/metabolismo , Animais , Disponibilidade Biológica , Ingestão de Alimentos , Comportamento Alimentar , Plásticos/metabolismo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA