Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Arthritis Rheumatol ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556917

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA) is an autoimmune disease in which the joint lining or synovium becomes highly inflamed and majorly contributes to disease progression. Understanding pathogenic processes in RA synovium is critical for identifying therapeutic targets. We performed laser capture microscopy (LCM) followed by RNA sequencing (LCM-RNAseq) to study regional transcriptomes throughout RA synovium. METHODS: Synovial lining, sublining, and vessel samples were captured by LCM from seven patients with RA and seven patients with osteoarthritis (OA). RNAseq was performed on RNA extracted from captured tissue. Principal component analysis was performed on the sample set by disease state. Differential expression analysis was performed between disease states based on log2 fold change and q value parameters. Pathway analysis was performed using the Reactome Pathway Database on differentially expressed genes among disease states. Significantly enriched pathways in each synovial region were selected based on the false discovery rate. RESULTS: RA and OA transcriptomes were distinguishable by principal component analysis. Pairwise comparisons of synovial lining, sublining, and vessel samples between RA and OA revealed substantial differences in transcriptional patterns throughout the synovium. Hierarchical clustering of pathways based on significance revealed a pattern of association between biologic function and synovial topology. Analysis of pathways uniquely enriched in each region revealed distinct phenotypic abnormalities. As examples, RA lining samples were marked by anomalous immune cell signaling, RA sublining samples were marked by aberrant cell cycle, and RA vessel samples were marked by alterations in heme scavenging. CONCLUSION: LCM-RNAseq confirms reported transcriptional differences between the RA synovium and the OA synovium and provides evidence supporting a relationship between synovial topology and molecular anomalies in RA.

2.
Biomater Sci ; 12(8): 2041-2056, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38349277

RESUMO

Biomaterial-based agents have been demonstrated to regulate the function of immune cells in models of autoimmunity. However, the complexity of the kinetics of immune cell activation can present a challenge in optimizing the dose and frequency of administration. Here, we report a model of autoreactive T cell activation, which are key drivers in autoimmune inflammatory joint disease. The model is termed a multi-scale Agent-Based, Cell-Driven model of Inflammatory Arthritis (ABCD of IA). Using kinetic rate equations and statistical theory, ABCD of IA simulated the activation and presentation of autoantigens by dendritic cells, interactions with cognate T cells and subsequent T cell proliferation in the lymph node and IA-affected joints. The results, validated with in vivo data from the T cell driven SKG mouse model, showed that T cell proliferation strongly correlated with the T cell receptor (TCR) affinity distribution (TCR-ad), with a clear transition state from homeostasis to an inflammatory state. T cell proliferation was strongly dependent on the amount of antigen in antigenic stimulus event (ASE) at low concentrations. On the other hand, inflammation driven by Th17-inducing cytokine mediated T cell phenotype commitment was influenced by the initial level of Th17-inducing cytokines independent of the amount of arthritogenic antigen. The introduction of inhibitory artificial antigen presenting cells (iaAPCs), which locally suppress T cell activation, reduced T cell proliferation in a dose-dependent manner. The findings in this work set up a framework based on theory and modeling to simulate personalized therapeutic strategies in IA.


Assuntos
Artrite , Camundongos , Animais , Linfócitos T , Autoantígenos , Ativação Linfocitária , Citocinas , Receptores de Antígenos de Linfócitos T/genética
3.
Nat Rev Rheumatol ; 20(4): 203-215, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38383732

RESUMO

Disease-modifying drugs have transformed the treatment options for many systemic autoimmune diseases. However, an evolving understanding of disease mechanisms, which might vary between individuals, is paving the way for the development of novel agents that operate in a patient-tailored manner through immunophenotypic regulation of disease-relevant cells and the microenvironment of affected tissue domains. Immunoengineering is a field that is focused on the application of engineering principles to the modulation of the immune system, and it could enable future personalized and immunoregulatory therapies for rheumatic diseases. An important aspect of immunoengineering is the harnessing of material chemistries to design technologies that span immunologically relevant length scales, to enhance or suppress immune responses by re-balancing effector and regulatory mechanisms in innate or adaptive immunity and rescue abnormalities underlying pathogenic inflammation. These materials are endowed with physicochemical properties that enable features such as localization in immune cells and organs, sustained delivery of immunoregulatory agents, and mimicry of key functions of lymphoid tissue. Immunoengineering applications already exist for disease management, and there is potential for this new discipline to improve disease modification in rheumatology.


Assuntos
Doenças Autoimunes , Autoimunidade , Humanos , Inflamação , Imunidade Adaptativa , Doenças Autoimunes/terapia
4.
Sci Adv ; 10(5): eadg7887, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38295166

RESUMO

Protein tyrosine phosphatases (PTPs) play major roles in cancer and are emerging as therapeutic targets. Recent reports suggest low-molecular weight PTP (LMPTP)-encoded by the ACP1 gene-is overexpressed in prostate tumors. We found ACP1 up-regulated in human prostate tumors and ACP1 expression inversely correlated with overall survival. Using CRISPR-Cas9-generated LMPTP knockout C4-2B and MyC-CaP cells, we identified LMPTP as a critical promoter of prostate cancer (PCa) growth and bone metastasis. Through metabolomics, we found that LMPTP promotes PCa cell glutathione synthesis by dephosphorylating glutathione synthetase on inhibitory Tyr270. PCa cells lacking LMPTP showed reduced glutathione, enhanced activation of eukaryotic initiation factor 2-mediated stress response, and enhanced reactive oxygen species after exposure to taxane drugs. LMPTP inhibition slowed primary and bone metastatic prostate tumor growth in mice. These findings reveal a role for LMPTP as a critical promoter of PCa growth and metastasis and validate LMPTP inhibition as a therapeutic strategy for treating PCa through sensitization to oxidative stress.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Peso Molecular , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Tirosina , Proteínas Tirosina Fosfatases/metabolismo
6.
ACS Nano ; 18(3): 1892-1906, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38016062

RESUMO

Disease-modifying drugs have improved the treatment for autoimmune joint disorders, such as rheumatoid arthritis, but inflammatory flares are a common experience. This work reports the development and application of flare-modulating poly(lactic-co-glycolic acid)-poly(ethylene glycol)-maleimide (PLGA-PEG-MAL)-based nanoparticles conjugated with joint-relevant peptide antigens, aggrecan70-84 and type 2 bovine collagen256-270. Peptide-conjugated PLGA-PEG-MAL nanoparticles encapsulated calcitriol, which acted as an immunoregulatory agent, and were termed calcitriol-loaded nanoparticles (CLNP). CLNP had a ∼200 nm hydrodynamic diameter with a low polydispersity index. In vitro, CLNP induced phenotypic changes in bone marrow derived dendritic cells (DC), reducing the expression of costimulatory and major histocompatibility complex class II molecules, and proinflammatory cytokines. Bulk RNA sequencing of DC showed that CLNP enhanced expression of Ctla4, a gene associated with downregulation of immune responses. In vivo, CLNP accumulated in the proximal lymph nodes after intramuscular injection. Administration of CLNP was not associated with changes in peripheral blood cell numbers or cytokine levels. In the collagen-induced arthritis and SKG mouse models of autoimmune joint disorders, CLNP reduced clinical scores, prevented bone erosion, and preserved cartilage proteoglycan, as assessed by high-resolution microcomputed tomography and histomorphometry analysis. The disease protective effects were associated with increased CTLA-4 expression in joint-localized DC and CD4+ T cells but without generalized suppression of T cell-dependent immune response. The results support the potential of CLNP as modulators of disease flares in autoimmune arthropathies.


Assuntos
Doenças Autoimunes , Lactatos , Nanopartículas , Polietilenoglicóis , Camundongos , Animais , Bovinos , Calcitriol/metabolismo , Exacerbação dos Sintomas , Microtomografia por Raio-X , Citocinas/metabolismo , Imunidade , Nanopartículas/química , Células Dendríticas
7.
Biochem Soc Trans ; 51(4): 1419-1427, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37409507

RESUMO

Vaccinia virus is a poxvirus that has been successfully leveraged to develop vaccines for smallpox, which is caused by the closely related Variola virus. Smallpox has been declared as 'eradicated' by the WHO in 1980; however, it still poses a potential bioterrorism threat. More recently, the spreading of monkeypox (MPox) in non-endemic countries has further highlighted the importance of continuing the exploration for druggable targets for poxvirus infections. The vaccinia H1 (VH1) phosphatase is the first reported dual specificity phosphatase (DUSP) able to hydrolyze both phosphotyrosine and phosphoserine/phosphotheonine residues. VH1 is a 20 kDa protein that forms a stable dimer and can dephosphorylate both viral and cellular substrates to regulate the viral replication cycle and host immune response. VH1 dimers adopt a domain swap mechanism with the first 20 amino acids of each monomer involved in dense electrostatic interaction and salt bridge formations while hydrophobic interactions between the N-terminal and C-terminal helices further stabilize the dimer. VH1 appears to be an ideal candidate for discovery of novel anti-poxvirus agents because it is highly conserved within the poxviridae family and is a virulence factor, yet it displays significant divergence in sequence and dimerization mechanism from its human closest ortholog vaccinia H1-related (VHR) phosphatase, encoded by the DUSP3 gene. As the dimeric quaternary structure of VH1 is essential for its phosphatase activity, strategies leading to disruption of the dimer structure might aid in VH1 inhibitor development.


Assuntos
Mpox , Varíola , Vacínia , Humanos , Monoéster Fosfórico Hidrolases/metabolismo , Vaccinia virus/metabolismo
8.
Sci Signal ; 16(792): eabn8668, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402225

RESUMO

Receptor-type protein phosphatase α (RPTPα) promotes fibroblast-dependent arthritis and fibrosis, in part, by enhancing the activation of the kinase SRC. Synovial fibroblasts lining joint tissue mediate inflammation and tissue damage, and their infiltration into adjacent tissues promotes disease progression. RPTPα includes an ectodomain and two intracellular catalytic domains (D1 and D2) and, in cancer cells, undergoes inhibitory homodimerization, which is dependent on a D1 wedge motif. Through single-molecule localization and labeled molecule interaction microscopy of migrating synovial fibroblasts, we investigated the role of RPTPα dimerization in the activation of SRC, the migration of synovial fibroblasts, and joint damage in a mouse model of arthritis. RPTPα clustered with other RPTPα and with SRC molecules in the context of actin-rich structures. A known dimerization-impairing mutation in the wedge motif (P210L/P211L) and the deletion of the D2 domain reduced RPTPα-RPTPα clustering; however, it also unexpectedly reduced RPTPα-SRC association. The same mutations also reduced recruitment of RPTPα to actin-rich structures and inhibited SRC activation and cellular migration. An antibody against the RPTPα ectodomain that prevented the clustering of RPTPα also inhibited RPTPα-SRC association and SRC activation and attenuated fibroblast migration and joint damage in arthritic mice. A catalytically inactivating RPTPα-C469S mutation protected mice from arthritis and reduced SRC activation in synovial fibroblasts. We conclude that RPTPα clustering retains it to actin-rich structures to promote SRC-mediated fibroblast migration and can be modulated through the extracellular domain.


Assuntos
Actinas , Artrite , Animais , Camundongos , Análise por Conglomerados , Fibroblastos/metabolismo , Fosfoproteínas Fosfatases , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo
9.
Adv Sci (Weinh) ; 10(11): e2202720, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36890657

RESUMO

Disease modifying antirheumatic drugs (DMARDs) have improved the prognosis of autoimmune inflammatory arthritides but a large fraction of patients display partial or nonresponsiveness to front-line DMARDs. Here, an immunoregulatory approach based on sustained joint-localized release of all-trans retinoic acid (ATRA), which modulates local immune activation and enhances disease-protective T cells and leads to systemic disease control is reported. ATRA imprints a unique chromatin landscape in T cells, which is associated with an enhancement in the differentiation of naïve T cells into anti-inflammatory regulatory T cells (Treg ) and suppression of Treg destabilization. Sustained release poly-(lactic-co-glycolic) acid (PLGA)-based biodegradable microparticles encapsulating ATRA (PLGA-ATRA MP) are retained in arthritic mouse joints after intra-articular (IA) injection. IA PLGA-ATRA MP enhance migratory Treg which in turn reduce inflammation and modify disease in injected and uninjected joints, a phenotype that is also reproduced by IA injection of Treg . PLGA-ATRA MP reduce proteoglycan loss and bone erosions in the SKG and collagen-induced arthritis mouse models of autoimmune arthritis. Strikingly, systemic disease modulation by PLGA-ATRA MP is not associated with generalized immune suppression. PLGA-ATRA MP have the potential to be developed as a disease modifying agent for autoimmune arthritis.


Assuntos
Antirreumáticos , Artrite , Doenças Autoimunes , Camundongos , Animais , Doenças Autoimunes/tratamento farmacológico , Linfócitos T Reguladores , Inflamação , Tretinoína/farmacologia
10.
Nat Rev Drug Discov ; 22(4): 273-294, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36693907

RESUMO

Protein phosphatases act as key regulators of multiple important cellular processes and are attractive therapeutic targets for various diseases. Although extensive effort has been dedicated to phosphatase-targeted drug discovery, early expeditions for competitive phosphatase inhibitors were plagued by druggability issues, leading to the stigmatization of phosphatases as difficult targets. Despite challenges, persistent efforts have led to the identification of several drug-like, non-competitive modulators of some of these enzymes - including SH2 domain-containing protein tyrosine phosphatase 2, protein tyrosine phosphatase 1B, vascular endothelial protein tyrosine phosphatase and protein phosphatase 1 - reigniting interest in therapeutic targeting of phosphatases. Here, we discuss recent progress in phosphatase drug discovery, with emphasis on the development of selective modulators that exhibit biological activity. The roles and regulation of protein phosphatases in immune cells and their potential as powerful targets for immuno-oncology and autoimmunity indications are assessed.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Proteínas Tirosina Fosfatases/metabolismo , Fosfoproteínas Fosfatases , Doenças Autoimunes/tratamento farmacológico , Neoplasias/tratamento farmacológico , Imunoterapia
11.
Drug Deliv Transl Res ; 13(7): 1912-1924, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36566262

RESUMO

Short-chain fatty acids (SCFAs) are major metabolic products of indigestible polysaccharides in the gut and mediate the function of immune cells to facilitate homeostasis. The immunomodulatory effect of SCFAs has been attributed, at least in part, to the epigenetic modulation of immune cells through the inhibition the nucleus-resident enzyme histone deacetylase (HDAC). Among the downstream effects, SCFAs enhance regulatory T cells (Treg) over inflammatory T helper (Th) cells, including Th17 cells, which can be pathogenic. Here, we characterize the potential of two common SCFAs-butyrate and pentanoate-in modulating differentiation of T cells in vitro. We show that butyrate but not pentanoate exerts a concentration-dependent effect on Treg and Th17 differentiation. Increasing the concentration of butyrate suppresses the Th17-associated RORγtt and IL-17 and increases the expression of Treg-associated FoxP3. To effectively deliver butyrate, encapsulation of butyrate in a liposomal carrier, termed BLIPs, reduced cytotoxicity while maintaining the immunomodulatory effect on T cells. Consistent with these results, butyrate and BLIPs inhibit HDAC and promote a unique chromatin landscape in T cells under conditions that otherwise promote conversion into a pro-inflammatory phenotype. Motif enrichment analysis revealed that butyrate and BLIP-mediated suppression of Th17-associated chromatin accessibility corresponded with a marked decrease in bZIP family transcription factor binding sites. These results support the utility and further evaluation of BLIPs as an immunomodulatory agent for autoimmune disorders that are characterized by chronic inflammation and pathogenic inflammatory T cells.


Assuntos
Butiratos , Ácidos Graxos Voláteis , Ácidos Graxos Voláteis/farmacologia , Ácidos Graxos Voláteis/metabolismo , Butiratos/farmacologia , Butiratos/metabolismo , Linfócitos T Reguladores/metabolismo , Valeratos/metabolismo , Valeratos/farmacologia , Epigênese Genética , Cromatina/metabolismo
12.
J Biol Chem ; 298(12): 102655, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328244

RESUMO

T-cell protein tyrosine phosphatase (TC-PTP) is a negative regulator of T-cell receptor and oncogenic receptor tyrosine kinase signaling and implicated in cancer and autoimmune disease. TC-PTP activity is modulated by an intrinsically disordered C-terminal region (IDR) and suppressed in cells under basal conditions. In vitro structural studies have shown that the dynamic reorganization of IDR around the catalytic domain, driven by electrostatic interactions, can lead to TC-PTP activity inhibition; however, the process has not been studied in cells. Here, by assessing a mutant (378KRKRPR383 mutated into 378EAAAPE383, called TC45E/A) with impaired tail-PTP domain interaction, we obtained evidence that the downmodulation of TC-PTP enzymatic activity by the IDR occurs in cells. However, we found that the regulation of TC-PTP by the IDR is only recapitulated in vitro when crowding polymers that mimic the intracellular environment are present in kinetic assays using a physiological phosphopeptide. Our FRET-based assays in vitro and in cells confirmed that the effect of the mutant correlates with an impairment of the intramolecular inhibitory remodeling of TC-PTP by the IDR. This work presents an early example of the allosteric regulation of a protein tyrosine phosphatase being controlled by the cellular environment and provides a framework for future studies and targeting of TC-PTP function.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 2 , Transdução de Sinais , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Regulação Alostérica , Transdução de Sinais/fisiologia , Fosforilação
13.
Br J Haematol ; 198(3): 556-573, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35655388

RESUMO

Chronic lymphocytic leukaemia (CLL) is characterised by malignant mature-like B cells. Supportive to CLL cell survival is chronic B-cell receptor (BCR) signalling; however, emerging evidence demonstrates CLL cells proliferate in response to T-helper (Th) cells in a CD40L-dependent manner. We showed provision of Th stimulation via CD40L upregulated CD45 phosphatase activity and BCR signalling in non-malignant B cells. Consequently, we hypothesised Th cell upregulation of CLL cell CD45 activity may be an important regulator of CLL BCR signalling and proliferation. Using patient-derived CLL cells in a culture system with activated autologous Th cells, results revealed increases in both Th and CLL cell CD45 activity, which correlated with enhanced downstream antigen receptor signalling and proliferation. Concomitantly increased was the surface expression of Galectin-1, a CD45 ligand, and CD43, a CLL immunophenotypic marker. Galectin-1/CD43 double expression defined a proliferative CLL cell population with enhanced CD45 activity. Targeting either Galectin-1 or CD43 using silencing, pharmacology, or monoclonal antibody strategies dampened CD45 activity and CLL cell proliferation. These results highlight a mechanism where activated Th cells drive CLL cell BCR signalling and proliferation via Galectin-1 and CD43-mediated regulation of CD45 activity, identifying modulation of CD45 phosphatase activity as a potential therapeutic target in CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Ligante de CD40 , Proliferação de Células , Galectina 1 , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Linfócitos T Auxiliares-Indutores
14.
Bioeng Transl Med ; 7(2): e10288, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600637

RESUMO

Lipids constitute a diverse class of molecular regulators with ubiquitous physiological roles in sustaining life. These carbon-rich compounds are primarily sourced from exogenous sources and may be used directly as structural cellular building blocks or as a substrate for generating signaling mediators to regulate cell behavior. In both of these roles, lipids play a key role in both immune activation and suppression, leading to inflammation and resolution, respectively. The simple yet elegant structural properties of lipids encompassing size, hydrophobicity, and molecular weight enable unique biodistribution profiles that facilitate preferential accumulation in target tissues to modulate relevant immune cell subsets. Thus, the structural and functional properties of lipids can be leveraged to generate new materials as pharmacological agents for potently modulating the immune system. Here, we discuss the properties of three classes of lipids: polyunsaturated fatty acids, short-chain fatty acids, and lipid adjuvants. We describe their immunoregulatory functions in modulating disease pathogenesis in preclinical models and in human clinical trials. We conclude with an outlook on harnessing the diverse and potent immune modulating properties of lipids for immunoregulation.

15.
JCI Insight ; 7(8)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35451370

RESUMO

Systemic sclerosis (SSc) is a fibrotic autoimmune disease characterized by pathogenic activation of fibroblasts enhanced by local oxidative stress. The tyrosine phosphatase PTP4A1 was identified as a critical promoter of TGF-ß signaling in SSc. Oxidative stress is known to functionally inactivate tyrosine phosphatases. Here, we assessed whether oxidation of PTP4A1 modulates its profibrotic action and found that PTP4A1 forms a complex with the kinase SRC in scleroderma fibroblasts, but surprisingly, oxidative stress enhanced rather than reduced PTP4A1's association with SRC and its profibrotic action. Through structural assessment of the oxo-PTP4A1-SRC complex, we unraveled an unexpected mechanism whereby oxidation of a tyrosine phosphatase promotes its function through modification of its protein complex. Considering the importance of oxidative stress in the pathogenesis of SSc and fibrosis, our findings suggest routes for leveraging PTP4A1 oxidation as a potential strategy for developing antifibrotic agents.


Assuntos
Escleroderma Sistêmico , Fibroblastos/metabolismo , Fibrose , Humanos , Estresse Oxidativo , Escleroderma Sistêmico/patologia , Tirosina/metabolismo
16.
Am J Physiol Cell Physiol ; 322(6): C1061-C1067, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35476502

RESUMO

Rheumatoid arthritis (RA) is a common autoimmune disease that causes inflammation of the joints and damage to the cartilage and bone. The pathogenesis of RA is characterized in many patients by the presence of antibodies against citrullinated proteins. Proteoglycans are key structural elements of extracellular matrix in the joint articular cartilage and synovium and are secreted as lubricants in the synovial fluid. Alterations of proteoglycans contribute to RA pathogenesis. Proteoglycans such as aggrecan can be citrullinated and become potential targets of the rheumatoid autoimmune response. Proteoglycans are also upregulated in RA joints and/or undergo alterations of their regulatory functions over cytokines and chemokines, which promotes inflammation and bone damage. Recent studies have aimed to not only clarify these mechanisms but also develop novel proteoglycan-modulating therapeutics. These include agents altering the function and signaling of proteoglycans as well as tolerizing agents targeting citrullinated aggrecan. This mini-review summarizes the most recent findings regarding the dysregulation of proteoglycans that contributes to RA pathogenesis and the potential for proteoglycan-modulating agents to improve upon current RA therapy.


Assuntos
Artrite Reumatoide , Proteoglicanas , Agrecanas/metabolismo , Artrite Reumatoide/tratamento farmacológico , Humanos , Inflamação/metabolismo , Proteoglicanas/química , Líquido Sinovial/metabolismo
17.
Cell Rep ; 36(6): 109525, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380042

RESUMO

Humoral immunity relies on the efficient differentiation of memory B cells (MBCs) into antibody-secreting cells (ASCs). T helper (Th) signals upregulate B cell receptor (BCR) signaling by potentiating Src family kinases through increasing CD45 phosphatase activity (CD45 PA). In this study, we show that high CD45 PA in MBCs enhances BCR signaling and is essential for their effective ASC differentiation. Mechanistically, Th signals upregulate CD45 PA through intensifying the surface binding of a CD45 ligand, Galectin-1. CD45 PA works as a sensor of T cell help and defines high-affinity germinal center (GC) plasma cell (PC) precursors characterized by IRF4 expression in vivo. Increasing T cell help in vitro results in an incremental CD45 PA increase and enhances ASC differentiation by facilitating effective induction of the transcription factors IRF4 and BLIMP1. This study connects Th signals with BCR signaling through Galectin-1-dependent regulation of CD45 PA and provides a mechanism for efficient ASC differentiation of MBCs.


Assuntos
Linfócitos B/citologia , Diferenciação Celular/imunologia , Memória Imunológica , Antígenos Comuns de Leucócito/metabolismo , Plasmócitos/citologia , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Formação de Anticorpos , Ligante de CD40/metabolismo , Feminino , Galectina 1/metabolismo , Centro Germinativo/citologia , Humanos , Subpopulações de Linfócitos/metabolismo , Camundongos Endogâmicos BALB C , Regulação para Cima
18.
J Med Chem ; 64(9): 5645-5653, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33914534

RESUMO

Obesity-associated insulin resistance plays a central role in the pathogenesis of type 2 diabetes. A promising approach to decrease insulin resistance in obesity is to inhibit the protein tyrosine phosphatases that negatively regulate insulin receptor signaling. The low-molecular-weight protein tyrosine phosphatase (LMPTP) acts as a critical promoter of insulin resistance in obesity by inhibiting phosphorylation of the liver insulin receptor activation motif. Here, we report development of a novel purine-based chemical series of LMPTP inhibitors. These compounds inhibit LMPTP with an uncompetitive mechanism and are highly selective for LMPTP over other protein tyrosine phosphatases. We also report the generation of a highly orally bioavailable purine-based analogue that reverses obesity-induced diabetes in mice.


Assuntos
Inibidores Enzimáticos/química , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Purinas/química , Administração Oral , Animais , Sítios de Ligação , Cristalografia por Raios X , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/etiologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Meia-Vida , Humanos , Resistência à Insulina , Cinética , Simulação de Dinâmica Molecular , Obesidade/complicações , Obesidade/patologia , Fosforilação/efeitos dos fármacos , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Purinas/metabolismo , Purinas/farmacologia , Purinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
19.
J Cell Physiol ; 236(9): 6630-6642, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33615467

RESUMO

Obesity is a major contributing factor to the pathogenesis of Type 2 diabetes. Multiple human genetics studies suggest that high activity of the low molecular weight protein tyrosine phosphatase (LMPTP) promotes metabolic syndrome in obesity. We reported that LMPTP is a critical promoter of insulin resistance in obesity by regulating liver insulin receptor signaling and that inhibition of LMPTP reverses obesity-associated diabetes in mice. Since LMPTP is expressed in adipose tissue but little is known about its function, here we examined the role of LMPTP in adipocyte biology. Using conditional knockout mice, we found that selective deletion of LMPTP in adipocytes impaired obesity-induced subcutaneous adipocyte hypertrophy. We assessed the role of LMPTP in adipogenesis in vitro, and found that LMPTP deletion or knockdown substantially impaired differentiation of primary preadipocytes and 3T3-L1 cells into adipocytes, respectively. Inhibition of LMPTP in 3T3-L1 preadipocytes also reduced adipogenesis and expression of proadipogenic transcription factors peroxisome proliferator activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha. Inhibition of LMPTP increased basal phosphorylation of platelet-derived growth factor receptor alpha (PDGFRα) on activation motif residue Y849 in 3T3-L1, resulting in increased activation of the mitogen-associated protein kinases p38 and c-Jun N-terminal kinase and increased PPARγ phosphorylation on inhibitory residue S82. Analysis of the metabolome of differentiating 3T3-L1 cells suggested that LMPTP inhibition decreased cell glucose utilization while enhancing mitochondrial respiration and nucleotide synthesis. In summary, we report a novel role for LMPTP as a key driver of adipocyte differentiation via control of PDGFRα signaling.


Assuntos
Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Gordura Subcutânea/patologia , Células 3T3-L1 , Adipogenia/genética , Animais , Diferenciação Celular/genética , Respiração Celular , Tamanho Celular , Transporte de Elétrons , Deleção de Genes , Regulação da Expressão Gênica , Glucose/metabolismo , Glicólise , Hipertrofia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Metaboloma , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Modelos Biológicos , PPAR gama/metabolismo , Fosforilação , Fosfosserina/metabolismo , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
JCI Insight ; 5(20)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33055428

RESUMO

Loss-of-function variants of protein tyrosine phosphatase non-receptor type 2 (PTPN2) enhance risk of inflammatory bowel disease and rheumatoid arthritis; however, whether the association between PTPN2 and autoimmune arthritis depends on gut inflammation is unknown. Here we demonstrate that induction of subclinical intestinal inflammation exacerbates development of autoimmune arthritis in SKG mice. Ptpn2-haploinsufficient SKG mice - modeling human carriers of disease-associated variants of PTPN2 - displayed enhanced colitis-induced arthritis and joint accumulation of Tregs expressing RAR-related orphan receptor γT (RORγt) - a gut-enriched Treg subset that can undergo conversion into FoxP3-IL-17+ arthritogenic exTregs. SKG colonic Tregs underwent higher conversion into arthritogenic exTregs when compared with peripheral Tregs, which was exacerbated by haploinsufficiency of Ptpn2. Ptpn2 haploinsufficiency led to selective joint accumulation of RORγt-expressing Tregs expressing the colonic marker G protein-coupled receptor 15 (GPR15) in arthritic mice and selectively enhanced conversion of GPR15+ Tregs into exTregs in vitro and in vivo. Inducible Treg-specific haploinsufficiency of Ptpn2 enhanced colitis-induced SKG arthritis and led to specific joint accumulation of GPR15+ exTregs. Our data validate the SKG model for studies at the interface between intestinal and joint inflammation and suggest that arthritogenic variants of PTPN2 amplify the link between gut inflammation and arthritis through conversion of colonic Tregs into exTregs.


Assuntos
Artrite/genética , Doenças Autoimunes/genética , Proteínas de Ligação a DNA/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Animais , Artrite/induzido quimicamente , Artrite/patologia , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/patologia , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Haploinsuficiência/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Interleucina-17/genética , Intestinos/patologia , Articulações/metabolismo , Articulações/patologia , Mananas/toxicidade , Camundongos , Camundongos Knockout , Dodecilsulfato de Sódio/toxicidade , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA