Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 19(1): 84-99, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38101399

RESUMO

Driving efficient and pure skeletal muscle cell differentiation from pluripotent stem cells (PSCs) has been challenging. Here, we report an optimized protocol that generates skeletal muscle progenitor cells with high efficiency and purity in a short period of time. Human induced PSCs (hiPSCs) and murine embryonic stem cells (mESCs) were specified into the mesodermal myogenic fate using distinct and species-specific protocols. We used a specific maturation medium to promote the terminal differentiation of both human and mouse myoblast populations, and generated myotubes associated with a large pool of cell-cycle arrested PAX7+ cells. We also show that myotube maturation is modulated by dish-coating properties, cell density, and percentage of myogenic progenitor cells. Given the high efficiency in the generation of myogenic progenitors and differentiated myofibers, this protocol provides an attractive strategy for tissue engineering, modeling of muscle dystrophies, and evaluation of new therapeutic approaches in vitro.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Animais , Camundongos , Células Cultivadas , Fibras Musculares Esqueléticas , Diferenciação Celular , Desenvolvimento Muscular , Músculo Esquelético
2.
Nat Commun ; 12(1): 3450, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103504

RESUMO

The epigenetic mechanisms coordinating the maintenance of adult cellular lineages and the inhibition of alternative cell fates remain poorly understood. Here we show that targeted ablation of the histone chaperone HIRA in myogenic cells leads to extensive transcriptional modifications, consistent with a role in maintaining skeletal muscle cellular identity. We demonstrate that conditional ablation of HIRA in muscle stem cells of adult mice compromises their capacity to regenerate and self-renew, leading to tissue repair failure. Chromatin analysis of Hira-deficient cells show a significant reduction of histone variant H3.3 deposition and H3K27ac modification at regulatory regions of muscle genes. Additionally, we find that genes from alternative lineages are ectopically expressed in Hira-mutant cells via MLL1/MLL2-mediated increase of H3K4me3 mark at silent promoter regions. Therefore, we conclude that HIRA sustains the chromatin landscape governing muscle cell lineage identity via incorporation of H3.3 at muscle gene regulatory regions, while preventing the expression of alternative lineage genes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Linhagem da Célula , Chaperonas de Histonas/metabolismo , Músculo Esquelético/patologia , Fatores de Transcrição/metabolismo , Acetilação , Animais , Proteínas de Ciclo Celular/deficiência , Linhagem Celular , Linhagem da Célula/genética , Loci Gênicos , Chaperonas de Histonas/deficiência , Histonas/metabolismo , Lisina/metabolismo , Camundongos , Desenvolvimento Muscular/genética , Músculo Esquelético/lesões , Músculo Esquelético/fisiopatologia , Regeneração , Sequências Reguladoras de Ácido Nucleico/genética , Células Satélites de Músculo Esquelético/metabolismo , Fatores de Transcrição/deficiência
3.
Front Cell Dev Biol ; 9: 652652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869209

RESUMO

PAX3 belongs to the paired-homeobox family of transcription factors and plays a key role as an upstream regulator of muscle progenitor cells during embryonic development. Pax3-mutant embryos display impaired somite development, yet the consequences for myotome formation have not been characterized. The early myotome is formed by PAX3-expressing myogenic cells that delaminate from the dermomyotomal lips and migrate between the dermomyotome and sclerotome where they terminally differentiate. Here we show that in Pax3-mutant embryos, myotome formation is impaired, displays a defective basal lamina and the regionalization of the structural protein Desmin is lost. In addition, this phenotype is more severe in embryos combining Pax3-null and Pax3 dominant-negative alleles. We identify the adhesion molecule M-Cadherin as a PAX3 target gene, the expression of which is modulated in the myotome according to Pax3 gain- and loss-of-function alleles analyzed. Taken together, we identify M-Cadherin as a PAX3-target linked to the formation of the myotome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA