Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(6): 391, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830870

RESUMO

Tissue injury causes activation of mesenchymal lineage cells into wound-repairing myofibroblasts (MFs), whose uncontrolled activity ultimately leads to fibrosis. Although this process is triggered by deep metabolic and transcriptional reprogramming, functional links between these two key events are not yet understood. Here, we report that the metabolic sensor post-translational modification O-linked ß-D-N-acetylglucosaminylation (O-GlcNAcylation) is increased and required for myofibroblastic activation. Inhibition of protein O-GlcNAcylation impairs archetypal myofibloblast cellular activities including extracellular matrix gene expression and collagen secretion/deposition as defined in vitro and using ex vivo and in vivo murine liver injury models. Mechanistically, a multi-omics approach combining proteomic, epigenomic, and transcriptomic data mining revealed that O-GlcNAcylation controls the MF transcriptional program by targeting the transcription factors Basonuclin 2 (BNC2) and TEA domain transcription factor 4 (TEAD4) together with the Yes-associated protein 1 (YAP1) co-activator. Indeed, inhibition of protein O-GlcNAcylation impedes their stability leading to decreased functionality of the BNC2/TEAD4/YAP1 complex towards promoting activation of the MF transcriptional regulatory landscape. We found that this involves O-GlcNAcylation of BNC2 at Thr455 and Ser490 and of TEAD4 at Ser69 and Ser99. Altogether, this study unravels protein O-GlcNAcylation as a key determinant of myofibroblastic activation and identifies its inhibition as an avenue to intervene with fibrogenic processes.


Assuntos
Miofibroblastos , Transdução de Sinais , Miofibroblastos/metabolismo , Animais , Camundongos , Humanos , Fibrose/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/metabolismo , Camundongos Endogâmicos C57BL , Fatores de Transcrição de Domínio TEA/metabolismo , Masculino , Processamento de Proteína Pós-Traducional , Acetilglucosamina/metabolismo , Transcrição Gênica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética
2.
Nat Commun ; 13(1): 5324, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088459

RESUMO

Tissue injury triggers activation of mesenchymal lineage cells into wound-repairing myofibroblasts, whose unrestrained activity leads to fibrosis. Although this process is largely controlled at the transcriptional level, whether the main transcription factors involved have all been identified has remained elusive. Here, we report multi-omics analyses unraveling Basonuclin 2 (BNC2) as a myofibroblast identity transcription factor. Using liver fibrosis as a model for in-depth investigations, we first show that BNC2 expression is induced in both mouse and human fibrotic livers from different etiologies and decreases upon human liver fibrosis regression. Importantly, we found that BNC2 transcriptional induction is a specific feature of myofibroblastic activation in fibrotic tissues. Mechanistically, BNC2 expression and activities allow to integrate pro-fibrotic stimuli, including TGFß and Hippo/YAP1 signaling, towards induction of matrisome genes such as those encoding type I collagen. As a consequence, Bnc2 deficiency blunts collagen deposition in livers of mice fed a fibrogenic diet. Additionally, our work establishes BNC2 as potentially druggable since we identified the thalidomide derivative CC-885 as a BNC2 inhibitor. Altogether, we propose that BNC2 is a transcription factor involved in canonical pathways driving myofibroblastic activation in fibrosis.


Assuntos
Cirrose Hepática , Miofibroblastos , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genômica , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Camundongos , Miofibroblastos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
J Hepatol ; 75(4): 912-923, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34129887

RESUMO

BACKGROUND & AIMS: Alcoholic hepatitis (AH) is a life-threatening disease with limited therapeutic options, as the molecular mechanisms leading to death are not well understood. This study evaluates the Hippo/Yes-associated protein (YAP) pathway which has been shown to play a role in liver regeneration. METHOD: The Hippo/YAP pathway was dissected in explants of patients transplanted for AH or alcohol-related cirrhosis and in control livers, using RNA-seq, real-time PCR, western blot, immunohistochemistry and transcriptome analysis after laser microdissection. We transfected primary human hepatocytes with constitutively active YAP (YAPS127A) and treated HepaRG cells and primary hepatocytes isolated from AH livers with a YAP inhibitor. We also used mouse models of ethanol exposure (Lieber de Carli) and liver regeneration (carbon tetrachloride) after hepatocyte transduction of YAPS127A. RESULTS: In AH samples, RNA-seq analysis and immunohistochemistry of total liver and microdissected hepatocytes revealed marked downregulation of the Hippo pathway, demonstrated by lower levels of active MST1 kinase and abnormal activation of YAP in hepatocytes. Overactivation of YAP in hepatocytes in vitro and in vivo led to biliary differentiation and loss of key biological functions such as regeneration capacity. Conversely, a YAP inhibitor restored the mature hepatocyte phenotype in abnormal hepatocytes taken from patients with AH. In ethanol-fed mice, YAP activation using YAPS127A resulted in a loss of hepatocyte differentiation. Hepatocyte proliferation was hampered by YAPS127A after carbon tetrachloride intoxication. CONCLUSION: Aberrant activation of YAP plays an important role in hepatocyte transdifferentiation in AH, through a loss of hepatocyte identity and impaired regeneration. Thus, targeting YAP is a promising strategy for the treatment of patients with AH. LAY SUMMARY: Alcoholic hepatitis is characterized by inflammation and a life-threatening alteration of liver regeneration, although the mechanisms behind this have not been identified. Herein, we show that liver samples from patients with alcoholic hepatitis are characterized by profound deregulation of the Hippo/YAP pathway with uncontrolled activation of YAP in hepatocytes. We used human cell and mouse models to show that inhibition of YAP reverts this hepatocyte defect and could be a novel therapeutic strategy for alcoholic hepatitis.


Assuntos
Hepatite Alcoólica/genética , Hepatócitos/classificação , Proteínas de Sinalização YAP/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , França , Hepatite Alcoólica/diagnóstico , Hepatócitos/metabolismo , Camundongos , Proteínas de Sinalização YAP/efeitos adversos
4.
Clin Transl Immunology ; 9(12): e1217, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376594

RESUMO

OBJECTIVES: Assessment of the adaptive immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for studying long-term immunity and vaccine strategies. We quantified IFNγ-secreting T cells reactive against the main viral SARS-CoV-2 antigens using a standardised enzyme-linked immunospot assay (ELISpot). METHODS: Overlapping peptide pools built from the sequences of M, N and S viral proteins and a mix (MNS) were used as antigens. Using IFNγ T-CoV-Spot assay, we assessed T-cell and antibody responses in mild, moderate and severe SARS-CoV-2 patients and in control samples collected before the outbreak. RESULTS: Specific T cells were assessed in 60 consecutive patients (mild, n = 26; moderate, n = 10; and severe patients, n = 24) during their follow-up (median time from symptom onset [interquartile range]: 36 days [28;53]). T cells against M, N and S peptide pools were detected in n = 60 (100%), n = 56 (93.3%), n = 55 patients (91.7%), respectively. Using the MNS mix, IFNγ T-CoV-Spot assay showed a specificity of 96.7% (95% CI, 88.5-99.6%) and a specificity of 90.3% (75.2-98.0%). The frequency of reactive T cells observed with M, S and MNS mix pools correlated with severity and with levels of anti-S1 and anti-RBD serum antibodies. CONCLUSION: IFNγ T-CoV-Spot assay is a reliable method to explore specific T cells in large cohorts of patients. This test may become a useful tool to assess the long-lived memory T-cell response after vaccination. Our study demonstrates that SARS-CoV-2 patients developing a severe disease achieve a higher adaptive immune response.

5.
J Hepatol ; 72(6): 1052-1061, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31953139

RESUMO

BACKGROUND & AIMS: Severe alcoholic hepatitis (SAH) is associated with a high risk of infection. The IL-33/ST2 pathway is involved in sepsis control but data regarding its role in alcohol-related liver disease (ALD) are lacking. We aimed to characterize the role of IL-33/ST2 in the polymorphonuclear neutrophils (PMNs) of patients with ALD and SAH. METHODS: Serum and circulating neutrophils were collected from patients with SAH, alcoholic cirrhosis and healthy controls. We quantified IL-33/ST2 pathway activity and CXCR2 at baseline and after exposure to IL-33. We also determined the migration capacity of PMNs. RESULTS: The decoy receptor of IL-33 (soluble ST2 [sST2]) was increased in SAH vs. cirrhosis and controls, demonstrating the defect in this pathway during ALD. The sST2 level was associated with response to treatment, 2-month survival, infection-free survival and probability of infection in SAH. Endotoxemia was weakly correlated with sST2. GRK2, a negative regulator of CXCR2, was overexpressed in PMNs of patients with SAH and cirrhosis and was decreased by IL-33. CXCR2 levels on PMNs were lower in SAH vs. cirrhosis and controls. Treatment with IL-33 partially restored CXCR2 expression in SAH and cirrhosis. PMN migration upon IL-8 was lower in patients with SAH and cirrhosis vs. controls. Treatment with IL-33 partially restored migration in those with SAH and cirrhosis. Interestingly, the migration capacity of PMNs and the response to IL-33 were enhanced in responders to corticosteroids (Lille <0.45) compared to non-responders. CONCLUSION: The IL33/ST2 pathway is defective in SAH and predicts outcome. This defect is associated with decreased CXCR2 expression on the surface of PMNs and lower migration capacity, which can be corrected by IL-33, especially in patients responding to steroids. These results suggest that IL-33 has therapeutic potential for SAH and its infectious complications. LAY SUMMARY: The neutrophils of patients with severe alcoholic hepatitis are associated with a defect in the IL-33/ST2 pathway. This defect is associated with lower migration capacities in neutrophils and a higher probability of getting infected. Administration of IL-33 to the neutrophils at least partly restores this defect and may be effective at reducing the risk of infection in patients with severe alcoholic hepatitis.


Assuntos
Movimento Celular/imunologia , Hepatite Alcoólica/sangue , Hepatite Alcoólica/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/sangue , Interleucina-33/sangue , Cirrose Hepática Alcoólica/sangue , Cirrose Hepática Alcoólica/imunologia , Neutrófilos/imunologia , Transdução de Sinais/imunologia , Adulto , Idoso , Apoptose/efeitos dos fármacos , Estudos de Casos e Controles , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Seguimentos , Humanos , Interleucina-33/farmacologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Prognóstico , Estudos Prospectivos , Receptores de Interleucina-8B/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
6.
Proteomics ; 19(21-22): e1900025, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31390680

RESUMO

Hepatocellular carcinoma (HCC) is the second cause of cancer-related deaths worldwide. A clearer understanding of the molecular mechanisms underlying tumor growth and invasiveness remains crucial for developing new therapies. Here, the expression of tetraspanins, a family of plasma membrane organizers involved in tumor progression, has been addressed. Integrative approaches combining transcriptomics and bioinformatics allow demonstrating the induced and heterogeneous expression of Tspan15 in HCC. Tspan15 positive tumors exhibit signatures related to hepatic progenitor cells as well as recurrence of cancer. Immunohistochemistry experiments confirm Tspan15 expression in the subset of HCC expressing stemness-related markers such as EpCAM and Cytokeratin-19. Functional networks reveal that most of these genes expressed in correlation to Tspan15 support cell proliferation. Furthermore, Tspan15 overexpression in the hepatoma cell line HepG2 significantly increases cell proliferation. A quantitative proteomic analysis of the secretome reveals a higher abundance of the protein connective tissue growth factor (CTGF), a pleiotropic matricellular signaling protein. Proteomic profiling of Tspan15 complexes allows identifying numerous membrane proteins including several growth factor receptors. Finally, Tspan15 increases ERK1/2 phosphorylation that directly controls CTGF expression and secretion. In conclusion, Tspan15 is a new stemness-related marker in HCC which exhibits high potential of tumor growth and recurrence.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Tetraspaninas/metabolismo , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Membrana Celular/metabolismo , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Proteômica , Tetraspaninas/genética
7.
J Hepatol ; 70(6): 1159-1169, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30685324

RESUMO

BACKGROUND & AIMS: In liver transplantation, organ shortage leads to the use of marginal grafts that are more susceptible to ischemia-reperfusion (IR) injury. We identified nucleotide-binding oligomerization domain 1 (NOD1) as an important modulator of polymorphonuclear neutrophil (PMN)-induced liver injury, which occurs in IR. Herein, we aimed to elucidate the role of NOD1 in IR injury, particularly focusing on its effects on the endothelium and hepatocytes. METHOD: Nod1 WT and KO mice were treated with NOD1 agonists and subjected to liver IR. Expression of adhesion molecules was analyzed in total liver, isolated hepatocytes and endothelial cells. Interactions between PMNs and hepatocytes were studied in an ex vivo co-culture model using electron microscopy and lactate dehydrogenase levels. We generated NOD1 antagonist-loaded nanoparticles (np ALINO). RESULTS: NOD1 agonist treatment increased liver injury, PMN tissue infiltration and upregulated ICAM-1 and VCAM-1 expression 20 hours after reperfusion. NOD1 agonist treatment without IR increased expression of adhesion molecules (ICAM-1, VCAM-1) in total liver and more particularly in WT hepatocytes, but not in Nod1 KO hepatocytes. This induction is dependent of p38 and ERK signaling pathways. Compared to untreated hepatocytes, a NOD1 agonist markedly increased hepatocyte lysis in co-culture with PMNs as shown by the increase of lactate dehydrogenase in supernatants. Interaction between hepatocytes and PMNs was confirmed by electron microscopy. In a mouse model of liver IR, treatment with np ALINO significantly reduced the area of necrosis, aminotransferase levels and ICAM-1 expression. CONCLUSION: NOD1 regulates liver IR injury through induction of adhesion molecules and modulation of hepatocyte-PMN interactions. NOD1 antagonist-loaded nanoparticles reduced liver IR injury and provide a potential approach to prevent IR, especially in the context of liver transplantation. LAY SUMMARY: Nucleotide-binding oligomerization domain 1 (NOD1) is as an important modulator of polymorphonuclear neutrophil (PMN)-induced liver injury, which occurs in ischemia-reperfusion. Here, we show that the NOD1 pathway targets liver adhesion molecule expression on the endothelium and on hepatocytes through p38 and ERK signaling pathways. The early increase of adhesion molecule expression after reperfusion emphasizes the importance of adhesion molecules in liver injury. In this study we generated nanoparticles loaded with NOD1 antagonist. These nanoparticles reduced liver necrosis by reducing PMN liver infiltration and adhesion molecule expression.


Assuntos
Molécula 1 de Adesão Intercelular/fisiologia , Fígado/irrigação sanguínea , Proteína Adaptadora de Sinalização NOD1/fisiologia , Traumatismo por Reperfusão/prevenção & controle , Molécula 1 de Adesão de Célula Vascular/fisiologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/fisiologia , Proteína Adaptadora de Sinalização NOD1/agonistas , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA