Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Biomol Struct Dyn ; 42(6): 3128-3144, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37216328

RESUMO

The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) belongs to the glucagon/secretin family. PACAP interacts with the pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) and vasoactive intestinal peptide receptors 1 and 2 (VPAC1 and VPAC2), exhibiting functions in the immune, endocrine, and nervous systems. This peptide is upregulated in numerous instances of brain injury, acting as a neuroprotective agent. It can also suppress HIV-1 and SARS-CoV-2 viral replication in vitro. This work aimed to identify, in each peptide-receptor system, the most relevant residues for complex stability and interaction energy communication via Molecular Dynamics (MD), Free Energy calculations, and Protein-energy networks, thus revealing in detail the underlying mechanisms of activation of these receptors. Hydrogen bond formation, interaction energies, and computational alanine scanning between PACAP and its receptors showed that His1, Asp3, Arg12, Arg14, and Lys15 are crucial to the peptide's stability. Furthermore, several PACAP interactions with structurally conserved positions deemed necessary in GPCR B1 activation, including Arg2.60, Lys2.67, and Glu7.42, were significant for the peptide's stability within the receptors. According to the protein-energy network, the connection between Asp3 of PACAP and the receptors' conserved Arg2.60 represents a critical energy communication hub in all complexes. Additionally, the ECDs of the receptors were also found to function as energy communication hubs for PACAP. Although the overall binding mode of PACAP in the three receptors was found to be highly conserved, Arg12 and Tyr13 of PACAP were more prominent in complex with PAC1, while Ser2 of PACAP was with VPAC2. The detailed analyses performed in this work pave the way for using PACAP and its receptors as therapeutic targets.Communicated by Ramaswamy H. Sarma.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores do Hormônio Hipofisário , Simulação de Dinâmica Molecular , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores do Hormônio Hipofisário/química , Receptores do Hormônio Hipofisário/metabolismo , Sistema Nervoso
2.
Nat Commun ; 14(1): 199, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639383

RESUMO

Orally available antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are necessary because of the continuous circulation of new variants that challenge immunized individuals. Because severe COVID-19 is a virus-triggered immune and inflammatory dysfunction, molecules endowed with both antiviral and anti-inflammatory activity are highly desirable. We identified here that kinetin (MB-905) inhibits the in vitro replication of SARS-CoV-2 in human hepatic and pulmonary cell lines. On infected monocytes, MB-905 reduced virus replication, IL-6 and TNFα levels. MB-905 is converted into its triphosphate nucleotide to inhibit viral RNA synthesis and induce error-prone virus replication. Coinhibition of SARS-CoV-2 exonuclease, a proofreading enzyme that corrects erroneously incorporated nucleotides during viral RNA replication, potentiated the inhibitory effect of MB-905. MB-905 shows good oral absorption, its metabolites are stable, achieving long-lasting plasma and lung concentrations, and this drug is not mutagenic nor cardiotoxic in acute and chronic treatments. SARS-CoV-2-infected hACE-mice and hamsters treated with MB-905 show decreased viral replication, lung necrosis, hemorrhage and inflammation. Because kinetin is clinically investigated for a rare genetic disease at regimens beyond the predicted concentrations of antiviral/anti-inflammatory inhibition, our investigation suggests the opportunity for the rapid clinical development of a new antiviral substance for the treatment of COVID-19.


Assuntos
Antivirais , COVID-19 , Animais , Humanos , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2 , Cinetina/farmacologia , Inflamação/tratamento farmacológico , Nucleotídeos , Replicação Viral
3.
J Virol ; 97(1): e0175222, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602368

RESUMO

Interleukin-27 (IL-27) is able to inhibit HIV-1 replication in peripheral blood mononuclear cells (PBMCs), macrophages, and dendritic cells. Here, we identify that IL-27 can produce opposing effects on HIV-1 replication in PBMCs and that the HIV-1 restriction factor BST-2/Tetherin is involved in both inhibitory and enhancing effects on HIV-1 infection induced by IL-27. IL-27 inhibited HIV-1 replication when added to cells 2 h after infection, promoting the prototypical BST-2/Tetherin-induced virion accumulation at the cell membrane of HIV-1-infected PBMCs. BST-2/Tetherin gene expression was significantly upregulated in the IL-27-treated PBMCs, with a simultaneous increase in the number of BST-2/Tetherin+ cells. The silencing of BST-2/Tetherin diminished the anti-HIV-1 effect of IL-27. In contrast, IL-27 increased HIV-1 production when added to infected cells 4 days after infection. This enhancing effect was prevented by BST-2/Tetherin gene knockdown, which also permitted IL-27 to function again as an HIV-1 inhibitory factor. These contrasting roles of IL-27 were associated with the dynamic of viral production, since the IL-27-mediated enhancement of virus replication was prevented by antiretroviral treatment of infected cells, as well as by keeping cells under agitation to avoid cell-to-cell contact. Likewise, inhibition of CD11a, an integrin associated with HIV-1 cell-to-cell transmission, abrogated the IL-27 enhancement of HIV-1 production. Our findings illustrate the complexity of the HIV-1-host interactions and may impact the potential therapeutic use of IL-27 and other soluble mediators that induce BST-2/Tetherin expression for HIV-1 infection. IMPORTANCE Here, we describe new findings related to the ability of the cytokine IL-27 to regulate the growth of HIV-1 in CD4+ T lymphocytes. IL-27 has long been considered a potent inhibitor of HIV-1 replication, a notion based on several reports showing that this cytokine controls HIV-1 infection in peripheral blood mononuclear cells (PBMCs), monocyte-derived macrophages, and dendritic cells. However, our present results are contrary to the current knowledge that IL-27 acts only as a powerful downregulator of HIV-1 replication. We observed that IL-27 can either prevent or enhance viral growth in PBMCs, an outcome dependent on when this cytokine is added to the infected cells. We detected that the increase of HIV-1 dissemination is due to enhanced cell-to-cell transmission with the involvement of the interferon-induced HIV-1 restriction factor BST-2/Tetherin and CD11a (LFA-1), an integrin that participates in formation of virological synapse.


Assuntos
Antígeno 2 do Estroma da Médula Óssea , Infecções por HIV , Interleucina-27 , Humanos , Integrinas , Leucócitos Mononucleares/metabolismo , Proteínas Virais Reguladoras e Acessórias
4.
Mol Immunol ; 148: 68-80, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35659727

RESUMO

The successful establishment of HIV-1 infection is related to inflammasome blocking or inactivation, which can result in the viral evasion of the immune responses and formation of reservoirs in several tissues. In this sense, we aimed to evaluate the viral and cellular mechanisms activated during HIV-1 infection in human primary macrophages that allow an effective viral replication in these cells. We found that resting HIV-1-infected macrophages, but not those activated in classical or alternative patterns, released IL-1ß and other pro-inflammatory cytokines, and showed increased CXCL10 expression, without changes in the NLRP3, AIM2 or RIG-I inflammasome pathways. Also, similar levels of Casp-1, phosphorylated NF-κB (p65) and NLRP3 proteins were found in uninfected and HIV-1-infected macrophages. Likewise, no alterations were detected in ASC specks released in the culture supernatant after HIV-1 infection, suggesting that macrophages remain viable after infection. Using in silico prediction studies, we found that the HIV-1 proteins Gag and Vpr interact with several host proteins. Comparable levels of trans-LTB4 were found in the supernatants of uninfected and HIV-1-infected macrophages, whereas ROS production was impaired in infected cells, which was not reversed after the PMA stimulus. Immunofluorescence analysis showed structural alterations in the mitochondrial architecture and an increase of BIM in the cytoplasm of infected cells. Our data suggest that HIV-1 proteins Gag and Vpr, through interacting with cellular proteins in the early steps of infection, preclude the inflammasome activation and the development of effective immune responses, thus allowing the establishment of the infection.


Assuntos
Infecções por HIV , HIV-1 , Infecções por HIV/metabolismo , Humanos , Inflamassomos , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Infecção Persistente
5.
J Immunol Res ; 2022: 8191253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465348

RESUMO

Objective: To assess the clinical efficacy of flavonoid supplements on allergic diseases. Design: Systematic review. Data Sources. MEDLINE/PubMed, Scopus, Web of Science, and Embase databases were searched from inception to September 2021. Eligibility Criteria for Selecting Studies. Eligible study designs were randomized controlled trials that investigated the effect of flavonoids applied to allergic diseases. Results: This review included 15 randomized controlled trials, including allergic rhinitis/cedar pollinosis (n = 10), asthma (n = 3), and atopic dermatitis (n = 2). A total of 990 participants aged 6 to 69 years were included in these studies. Globally, 12 studies (80%) revealed some benefits of flavonoids (isolate or combined with other compounds) in allergic patients, while three studies (20%) reported no statistically significant impact on symptom scores and/or lung function. No severe adverse events related to treatment were reported. According to the GRADE system, the outcomes evaluated were of low to moderate quality of evidence. Conclusions: Overall, this review suggests that the administration of flavonoids may provide a viable strategy for mitigating allergic symptoms. Future trials with high methodological quality are needed to establish definitive conclusions. This trial is registered with PROSPERO registration no. CRD42021237403.


Assuntos
Asma , Rinite Alérgica Sazonal , Rinite Alérgica , Asma/tratamento farmacológico , Flavonoides/uso terapêutico , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Rinite Alérgica/tratamento farmacológico , Rinite Alérgica Sazonal/tratamento farmacológico
6.
Microbiome ; 10(1): 65, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459226

RESUMO

BACKGROUND: Critically ill 2019 coronavirus disease (COVID-19) patients under invasive mechanical ventilation (IMV) are 10 to 40 times more likely to die than the general population. Although progression from mild to severe COVID-19 has been associated with hypoxia, uncontrolled inflammation, and coagulopathy, the mechanisms involved in the progression to severity are poorly understood. METHODS: The virome of tracheal aspirates (TA) from 25 COVID-19 patients under IMV was assessed through unbiased RNA sequencing (RNA-seq), and correlation analyses were conducted using available clinical data. Unbiased sequences from nasopharyngeal swabs (NS) from mild cases and TA from non-COVID patients were included in our study for further comparisons. RESULTS: We found higher levels and differential expression of human endogenous retrovirus K (HERV-K) genes in TA from critically ill and deceased patients when comparing nasopharyngeal swabs from mild cases to TA from non-COVID patients. In critically ill patients, higher HERV-K levels were associated with early mortality (within 14 days of diagnosis) in the intensive care unit. Increased HERV-K expression in deceased patients was associated with IL-17-related inflammation, monocyte activation, and an increased consumption of clotting/fibrinolysis factors. Moreover, increased HERV-K expression was detected in human primary monocytes from healthy donors after experimental SARS-CoV-2 infection in vitro. CONCLUSION: Our data implicate the levels of HERV-K transcripts in the physiopathology of COVID-19 in the respiratory tract of patients under invasive mechanical ventilation. Video abstract.


Assuntos
COVID-19 , Retrovirus Endógenos , Estado Terminal , Retrovirus Endógenos/genética , Humanos , Inflamação , Sistema Respiratório , SARS-CoV-2
7.
J Leukoc Biol ; 111(5): 1107-1121, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35322471

RESUMO

Infection by SARS-CoV-2 may elicit uncontrolled and damaging inflammatory responses. Thus, it is critical to identify compounds able to inhibit virus replication and thwart the inflammatory reaction. Here, we show that the plasma levels of the immunoregulatory neuropeptide VIP are elevated in patients with severe COVID-19, correlating with reduced inflammatory mediators and with survival on those patients. In vitro, vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP), highly similar neuropeptides, decreased the SARS-CoV-2 RNA content in human monocytes and viral production in lung epithelial cells, also reducing cell death. Both neuropeptides inhibited the production of proinflammatory mediators in lung epithelial cells and in monocytes. VIP and PACAP prevented in monocytes the SARS-CoV-2-induced activation of NF-kB and SREBP1 and SREBP2, transcriptions factors involved in proinflammatory reactions and lipid metabolism, respectively. They also promoted CREB activation, a transcription factor with antiapoptotic activity and negative regulator of NF-kB. Specific inhibition of NF-kB and SREBP1/2 reproduced the anti-inflammatory, antiviral, and cell death protection effects of VIP and PACAP. Our results support further clinical investigations of these neuropeptides against COVID-19.


Assuntos
COVID-19 , Peptídeo Intestinal Vasoativo , Humanos , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , RNA Viral , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo , SARS-CoV-2 , Fatores de Transcrição/metabolismo , Peptídeo Intestinal Vasoativo/farmacologia
8.
Viruses ; 14(2)2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35215969

RESUMO

Despite the development of specific therapies against severe acute respiratory coronavirus 2 (SARS-CoV-2), the continuous investigation of the mechanism of action of clinically approved drugs could provide new information on the druggable steps of virus-host interaction. For example, chloroquine (CQ)/hydroxychloroquine (HCQ) lacks in vitro activity against SARS-CoV-2 in TMPRSS2-expressing cells, such as human pneumocyte cell line Calu-3, and likewise, failed to show clinical benefit in the Solidarity and Recovery clinical trials. Another antimalarial drug, mefloquine, which is not a 4-aminoquinoline like CQ/HCQ, has emerged as a potential anti-SARS-CoV-2 antiviral in vitro and has also been previously repurposed for respiratory diseases. Here, we investigated the anti-SARS-CoV-2 mechanism of action of mefloquine in cells relevant for the physiopathology of COVID-19, such as Calu-3 cells (that recapitulate type II pneumocytes) and monocytes. Molecular pathways modulated by mefloquine were assessed by differential expression analysis, and confirmed by biological assays. A PBPK model was developed to assess mefloquine's optimal doses for achieving therapeutic concentrations. Mefloquine inhibited SARS-CoV-2 replication in Calu-3, with an EC50 of 1.2 µM and EC90 of 5.3 µM. It reduced SARS-CoV-2 RNA levels in monocytes and prevented virus-induced enhancement of IL-6 and TNF-α. Mefloquine reduced SARS-CoV-2 entry and synergized with Remdesivir. Mefloquine's pharmacological parameters are consistent with its plasma exposure in humans and its tissue-to-plasma predicted coefficient points suggesting that mefloquine may accumulate in the lungs. Altogether, our data indicate that mefloquine's chemical structure could represent an orally available host-acting agent to inhibit virus entry.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Antivirais/farmacologia , Cloroquina/farmacologia , Mefloquina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Células Epiteliais Alveolares/virologia , Linhagem Celular , Reposicionamento de Medicamentos/métodos , Humanos , Serina Endopeptidases/genética , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
9.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638604

RESUMO

The nano-sized membrane enclosed extracellular vesicles (EVs) released by virtually all cell types play an essential role in intercellular communication via delivering bio-molecules, such as nucleic acids, proteins, lipids, and other molecules to recipient cells. By mediating an active and steady-state cell-to-cell communication, EVs contribute to regulating and preserving cellular homeostasis. On the other hand, EVs can also spread pathogen-derived molecules during infections, subverting the host immune responses during infections and thus worsening pathophysiological processes. In recent years, the biological functioning of EVs has become a widespread research field in basic and clinical branches of medical sciences due to their potential role in therapeutic applications for several diseases. This review aims to summarize the main recent findings regarding the implication of EVs shed by human macrophages (MΦ-EVs) and how they can modulate the host immune response to control or increase the damage caused by infectious agents. We will also present the methods used to describe MΦ-EVs, as well as the potential of these EVs as disease diagnostic tools for some human pathogens. We believe that an in-depth understanding of the host-pathogen interactions mediated by MΦ-EVs may trigger the development of innovative therapeutic strategies against infectious diseases.


Assuntos
Vesículas Extracelulares/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Macrófagos/fisiologia , Comunicação Celular/fisiologia , Doenças Transmissíveis/patologia , Doenças Transmissíveis/fisiopatologia , Humanos
10.
Front Cell Infect Microbiol ; 11: 549020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490131

RESUMO

Influenza A virus (IAV) is the main etiological agent of acute respiratory tract infections. During IAV infection, interferon triggers the overexpression of restriction factors (RFs), the intracellular antiviral branch of the innate immune system. Conversely, severe influenza is associated with an unbalanced pro-inflammatory cytokine release. It is unclear whether other cytokines and chemokines released during IAV infection modulate RFs to control virus replication. Among the molecules enhanced in the infected respiratory tract, ligands of the CCR5 receptor play a key role, as they stimulate the migration of inflammatory cells to the alveoli. We investigated here whether ligands of the CCR5 receptor could enhance RFs to levels able to inhibit IAV replication. For this purpose, the human alveolar basal epithelial cell line (A549) was treated with endogenous (CCL3, CCL4 and CCL5) or exogenous (HIV-1 gp120) ligands prior to IAV infection. The three CC-chemokines tested reduced infectious titers between 30% to 45% upon 24 hours of infection. Eploying RT-PCR, a panel of RF mRNA levels from cells treated with CCR5 agonists was evaluated, which showed that the SAMHD1 expression was up-regulated four times over control upon exposure to CCL3, CCL4 and CCL5. We also found that IAV inhibition by CCL5 was dependent on PKC and that SAMHD1 protein levels were also increased after treatment with CCL5. In functional assays, we observed that the knockdown of SAMHD1 resulted in enhanced IAV replication in A549 cells and abolished both CCL5-mediated inhibition of IAV replication and CCL5-mediated cell death inhibition. Our data show that stimuli unrelated to interferon may trigger the upregulation of SAMHD1 and that this RF may directly interfere with IAV replication in alveolar epithelial cells.


Assuntos
Vírus da Influenza A , Influenza Humana , Quimiocina CCL5 , Humanos , Proteína 1 com Domínio SAM e Domínio HD , Replicação Viral
12.
J Antimicrob Chemother ; 76(7): 1874-1885, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33880524

RESUMO

BACKGROUND: Current approaches of drug repurposing against COVID-19 have not proven overwhelmingly successful and the SARS-CoV-2 pandemic continues to cause major global mortality. SARS-CoV-2 nsp12, its RNA polymerase, shares homology in the nucleotide uptake channel with the HCV orthologue enzyme NS5B. Besides, HCV enzyme NS5A has pleiotropic activities, such as RNA binding, that are shared with various SARS-CoV-2 proteins. Thus, anti-HCV NS5B and NS5A inhibitors, like sofosbuvir and daclatasvir, respectively, could be endowed with anti-SARS-CoV-2 activity. METHODS: SARS-CoV-2-infected Vero cells, HuH-7 cells, Calu-3 cells, neural stem cells and monocytes were used to investigate the effects of daclatasvir and sofosbuvir. In silico and cell-free based assays were performed with SARS-CoV-2 RNA and nsp12 to better comprehend the mechanism of inhibition of the investigated compounds. A physiologically based pharmacokinetic model was generated to estimate daclatasvir's dose and schedule to maximize the probability of success for COVID-19. RESULTS: Daclatasvir inhibited SARS-CoV-2 replication in Vero, HuH-7 and Calu-3 cells, with potencies of 0.8, 0.6 and 1.1 µM, respectively. Although less potent than daclatasvir, sofosbuvir alone and combined with daclatasvir inhibited replication in Calu-3 cells. Sofosbuvir and daclatasvir prevented virus-induced neuronal apoptosis and release of cytokine storm-related inflammatory mediators, respectively. Sofosbuvir inhibited RNA synthesis by chain termination and daclatasvir targeted the folding of secondary RNA structures in the SARS-CoV-2 genome. Concentrations required for partial daclatasvir in vitro activity are achieved in plasma at Cmax after administration of the approved dose to humans. CONCLUSIONS: Daclatasvir, alone or in combination with sofosbuvir, at higher doses than used against HCV, may be further fostered as an anti-COVID-19 therapy.


Assuntos
COVID-19 , Preparações Farmacêuticas , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Carbamatos , Chlorocebus aethiops , Humanos , Imidazóis , Pirrolidinas , RNA Viral , SARS-CoV-2 , Sofosbuvir/farmacologia , Valina/análogos & derivados , Células Vero
13.
Cell Death Discov ; 7(1): 43, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649297

RESUMO

Infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with leukopenia and uncontrolled inflammatory response in critically ill patients. A better comprehension of SARS-CoV-2-induced monocyte death is essential for the identification of therapies capable to control the hyper-inflammation and reduce viral replication in patients with 2019 coronavirus disease (COVID-19). Here, we show that SARS-CoV-2 engages inflammasome and triggers pyroptosis in human monocytes, experimentally infected, and from patients under intensive care. Pyroptosis associated with caspase-1 activation, IL-1ß production, gasdermin D cleavage, and enhanced pro-inflammatory cytokine levels in human primary monocytes. At least in part, our results originally describe mechanisms by which monocytes, a central cellular component recruited from peripheral blood to respiratory tract, succumb to control severe COVID-19.

14.
Sci Rep ; 10(1): 19603, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177532

RESUMO

Neutrophils release extracellular traps (NETs) after interaction with microorganisms and physiological or synthetic products. NETs consist of decondensed chromatin complexed with proteins, some of them with microbicidal properties. Because NETs can modulate the functioning of HIV-1 target cells, we aimed to verify whether they modify HIV-1 replication in macrophages. We found that exposure of HIV-1-infected macrophages to NETs resulted in significant inhibition of viral replication. The NET anti-HIV-1 action was independent of other soluble factors released by the activated neutrophils, but otherwise dependent on the molecular integrity of NETs, since NET-treatment with protease or DNase abolished this effect. NETs induced macrophage production of the anti-HIV-1 ß-chemokines Rantes and MIP-1ß, and reduced the levels of integrated HIV-1 DNA in the macrophage genome, which may explain the decreased virus production by infected macrophages. Moreover, the residual virions released by NET-treated HIV-1-infected macrophages lost infectivity. In addition, elevated levels of DNA-elastase complexes were detected in the plasma from HIV-1-infected individuals, and neutrophils from these patients released NETs, which also inhibited HIV-1 replication in in vitro infected macrophages. Our results reveal that NETs may function as an innate immunity mechanism able to restrain HIV-1 production in macrophages.


Assuntos
Armadilhas Extracelulares , Infecções por HIV/sangue , HIV-1/fisiologia , Macrófagos/virologia , Neutrófilos/citologia , Sobrevivência Celular , Células Cultivadas , Quimiocinas CC/metabolismo , DNA Viral/metabolismo , Armadilhas Extracelulares/genética , Infecções por HIV/virologia , HIV-1/patogenicidade , Humanos , Macrófagos/metabolismo , Neutrófilos/virologia , Replicação Viral/fisiologia
15.
PLoS One ; 15(8): e0237795, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32833989

RESUMO

Extracellular vesicles (EVs) are small membrane-limited structures derived from outward budding of the plasma membrane or endosomal system that participate in cellular communication processes through the transport of bioactive molecules to recipient cells. To date, there are no published methodological works showing step-by-step the isolation, characterization and internalization of small EVs secreted by human primary macrophages derived from circulating monocytes (MDM-derived sEVs). Thus, here we aimed to provide an alternative protocol based on differential ultracentrifugation (dUC) to describe small EVs (sEVs) from these cells. Monocyte-derived macrophages were cultured in EV-free medium during 24, 48 or 72 h and, then, EVs were isolated from culture supernatants by (dUC). Macrophages secreted a large amount of sEVs in the first 24 h, with size ranging from 40-150 nm, peaking at 105 nm, as evaluated by nanoparticle tracking analysis and scanning electron microscopy. The markers Alix, CD63 and CD81 were detected by immunoblotting in EV samples, and the co-localization of CD63 and CD81 after sucrose density gradient ultracentrifugation (S-DGUC) indicated the presence of sEVs from late endosomal origin. Confocal fluorescence revealed that the sEVs were internalized by primary macrophages after three hours of co-culture. The methodology here applied aims to contribute for enhancing reproducibility between the limited number of available protocols for the isolation and characterization of MDM-derived sEVs, thus providing basic knowledge in the area of EV methods that can be useful for those investigators working with sEVs released by human primary macrophages derived from circulating monocytes.


Assuntos
Comunicação Celular , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Buffy Coat/citologia , Diferenciação Celular , Fracionamento Celular/métodos , Centrifugação com Gradiente de Concentração/métodos , Técnicas de Cocultura , Voluntários Saudáveis , Humanos , Microscopia Intravital , Macrófagos/citologia , Macrófagos/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Monócitos/fisiologia , Cultura Primária de Células
16.
Sci Rep ; 10(1): 2715, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066757

RESUMO

Neutrophil extracellular traps (NETs) emerge from the cell as a DNA scaffold associated with cytoplasmic and granular proteins, able to immobilize and kill pathogens. This association occurs following nuclear and granular membrane disintegration, allowing contact with the decondensed chromatin. Thus, it is reasonable to speculate that the DNA can also mix with miRNAs and carry them in NETs. Here, we report for the first time the presence of the miRNA carriers associated with NETs and miRNAs present in NET-enriched supernatants (NET-miRs), thus adding a novel class of molecules and new proteins that can be released and transported in the NET platform. We observed that the majority of NET-miRs were common to all four stimuli used (PMA, interleukin-8, amyloid fibrils and Leishmania), and that miRNA-142-3p carried by NETs down-modulates protein kinase Cα and regulates TNF-α production in macrophages upon NET interaction with these cells. Our findings unveil a novel role for NETs in the cell communication processes, allowing the conveyance of miRNA from neutrophils to neighboring cells.


Assuntos
Comunicação Celular/imunologia , Armadilhas Extracelulares/imunologia , MicroRNAs/genética , Neutrófilos/imunologia , Fator de Necrose Tumoral alfa/genética , Amiloide/farmacologia , Antagomirs/genética , Antagomirs/metabolismo , Meios de Cultivo Condicionados/farmacologia , Armadilhas Extracelulares/metabolismo , Regulação da Expressão Gênica , Humanos , Interleucina-8/farmacologia , Leishmania braziliensis , MicroRNAs/antagonistas & inibidores , MicroRNAs/imunologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/microbiologia , Cultura Primária de Células , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/imunologia , Transdução de Sinais , Células THP-1 , Acetato de Tetradecanoilforbol/farmacologia , Fator de Necrose Tumoral alfa/imunologia
17.
BMC Infect Dis ; 19(1): 986, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752731

RESUMO

BACKGROUND: Zika virus (ZIKV) infection gained public health concern after the 2015 outbreak in Brazil, when microcephaly rates increased in babies born from infected mothers. It was demonstrated that ZIKV causes a congenital Zika virus syndrome, including various alterations in the development of the central nervous system. Although the infection of cells from the nervous system has been well documented, less is known in respect of ZIKV ability to infect immune cells. Herein, we investigated if peripheral blood mononuclear cells (PBMCs), freshly-isolated from healthy donors, could be infected by ZIKV. METHODS: PBMCs from healthy donors were isolated and cultured in medium with ZIKV strain Rio-U1 (MOI = 0.1). Infection was analyzed by RT-qPCR and flow cytometry. RESULTS: We detected the ZIKV RNA in PBMCs from all donors by RT-qPCR analysis. The detection of viral antigens by flow cytometry revealed that PBMC from more than 50% the donors were infected by ZIKV, with CD3+CD4+ T cells, CD3-CD19+ B cells and CD3+CD8+ T cells being, respectively, the most frequently infected subpopulations, followed by CD14+ monocytes. Additionally, we observed high variability in PBMC infection rates among different donors, either by numbers or type infected cells. CONCLUSIONS: These findings raise the hypothesis that PBMCs can act as a reservoir of the virus, which may facilitate viral dissemination to different organs, including immune-privileged sites.


Assuntos
Leucócitos Mononucleares/virologia , Infecção por Zika virus/virologia , Zika virus/isolamento & purificação , Antígenos CD19/genética , Antígenos CD19/imunologia , Linfócitos B/imunologia , Brasil , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Humanos , Leucócitos Mononucleares/imunologia , Monócitos/imunologia , Monócitos/virologia , Reação em Cadeia da Polimerase em Tempo Real , Zika virus/genética , Zika virus/fisiologia , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/genética , Infecção por Zika virus/imunologia
18.
Front Immunol ; 10: 2088, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552036

RESUMO

Cancer patients are at increased risk of developing thrombosis, comorbidity that has been associated with increased neutrophil counts and the formation of neutrophil extracellular traps (NETs). Interleukin-1ß (IL-1ß) modulates the expression of granulocyte colony-stimulating factor (G-CSF), a cytokine that promotes cancer-associated neutrophilia and NET generation. Herein, we combined a murine breast cancer model with a flow-restriction thrombosis model to evaluate whether the IL-1ß blockade could interfere with cancer-associated thrombosis. Mice bearing metastatic 4T1 tumors exhibited high neutrophil counts as well as elevated expression of G-CSF and IL-1ß in their tumors. On the other hand, mice bearing non-metastatic 67NR tumors showed no elevation in neutrophil counts and displayed low expression levels of G-CSF and IL-1ß in their tumors. 4T1 tumor-bearing mice but not 67NR tumor-bearing mice exhibited a NET-dependent prothrombotic state. Pharmacological blockade of IL-1 receptor (IL-1R) decreased the primary growth of 4T1 tumors and reduced the systemic levels of myeloperoxidase, cell-free DNA (cfDNA) and G-CSF, without interfering with the neutrophil counts. Most remarkably, the blockade of IL-1R abolished the prothrombotic state observed in 4T1 tumor-bearing mice. Overall, our results demonstrate that IL-1ß might be a feasible target to attenuate cancer-associated thrombosis, particularly in cancer types that rely on increased G-CSF production and involvement of NET formation.


Assuntos
Armadilhas Extracelulares/efeitos dos fármacos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1beta/antagonistas & inibidores , Neoplasias Mamárias Experimentais/complicações , Receptores de Interleucina-1/antagonistas & inibidores , Trombose/prevenção & controle , Animais , Neoplasias da Mama/complicações , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Armadilhas Extracelulares/metabolismo , Feminino , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Contagem de Leucócitos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos Endogâmicos BALB C , Neutrófilos/metabolismo , Peroxidase/metabolismo , Receptores de Interleucina-1/metabolismo , Trombose/complicações , Trombose/metabolismo , Carga Tumoral/efeitos dos fármacos
19.
Front Immunol ; 9: 1440, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29988513

RESUMO

Macrophages carry out numerous physiological activities that are essential for both systemic and local homeostasis, as well as innate and adaptive immune responses. Their biology is intricately regulated by hormones, neuropeptides, and neurotransmitters, establishing distinct neuroendocrine axes. The control is pleiotropic, including maturation of bone marrow-derived myeloid precursors, cell differentiation into functional subpopulations, cytotoxic activity, phagocytosis, production of inflammatory mediators, antigen presentation, and activation of effector lymphocytes. Additionally, neuroendocrine components modulate macrophage ability to influence tumor growth and to prevent the spreading of infective agents. Interestingly, macrophage-derived factors enhance glucocorticoid production through the stimulation of the hypothalamic-pituitary-adrenal axis. These bidirectional effects highlight a tightly controlled balance between neuroendocrine stimuli and macrophage function in the development of innate and adaptive immune responses. Herein, we discuss how components of neuroendocrine axes impact on macrophage development and function and may ultimately influence inflammation, tissue repair, infection, or cancer progression. The knowledge of the crosstalk between macrophages and endocrine or brain-derived components may contribute to improve and create new approaches with clinical relevance in homeostatic or pathological conditions.

20.
Front Immunol ; 9: 1336, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951068

RESUMO

Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are highly similar neuropeptides present in several tissues, endowed with immunoregulatory functions and other systemic effects. We previously reported that both neuropeptides reduce viral production in HIV-1-infected primary macrophages, with the participation of ß-chemokines and IL-10, and now we describe molecular mechanisms engaged in this activity. Macrophages exposed to VIP or PACAP before HIV-1 infection showed resistance to viral replication, comparable to that observed when the cells were treated after infection. Also, multiple treatments with a suboptimal dose of VIP or PACAP after macrophage infection resulted in a decline of virus production similar to the inhibition promoted by a single exposure to the optimal inhibitory concentration. Cellular signaling pathways involving cAMP production and activation of protein kinases A and C were critical components of the VIP and PACAP anti-HIV-1 effects. Analysis of the transcription factors and the transcriptional/cell cycle regulators showed that VIP and PACAP induced cAMP response element-binding protein activation, inhibited NF-kB, and reduced Cyclin D1 levels in HIV-1-infected cells. Remarkably, VIP and PACAP promoted G-to-A mutations in the HIV-1 provirus, matching those derived from the activity of the APOBEC family of viral restriction factors, and reduced viral infectivity. In conclusion, our findings strengthen the antiretroviral potential of VIP and PACAP and point to new therapeutic approaches to control the progression of HIV-1 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA