Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Prenat Diagn ; 34(6): 538-46, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24578229

RESUMO

OBJECTIVE: Detection of rare fetal cells (FCs) in the maternal circulation could be used for non-invasive prenatal diagnosis. Considering that FCs in maternal blood are present in extremely low frequency, manual scanning is cumbersome, time-consuming, and unsuitable for clinical applications. As an alternative, we optimized a custom-made classifier for automatic detection of FCs. METHODS: Using MetaSystems' automated platform, we developed a robust detection algorithm and validated its efficiency on retrieval of rare XY cells in a pure population of XX cells. Slides were scanned for presence of predefined XY cells after fluorescence in situ hybridization (FISH) and primed in situ labeling (PRINS). Retrieval of FCs was also performed on samples from maternal blood. RESULTS: The efficiency of detection of rare XY cells was 88% using FISH (117/133) in comparison with 78% (53/68) with PRINS. FC frequencies per 1 mL of maternal blood ranged from 3 to 6 FCs in normal pregnancies versus 13 to 21 FCs in Down syndrome pregnancies. CONCLUSION: Automatic scanning was more efficient and consistent than manual scanning for detection of rare FCs and required considerably less operator time. Automatic scanning using FISH is more sensitive than that using PRINS. The study validates automatic scanning retrieval of FCs from maternal blood.


Assuntos
Células Sanguíneas/citologia , Feto/citologia , Processamento de Imagem Assistida por Computador/métodos , Diagnóstico Pré-Natal/métodos , Marcação in Situ com Primers , Células Sanguíneas/patologia , Processamento Eletrônico de Dados/métodos , Feminino , Testes Hematológicos/métodos , Humanos , Hibridização in Situ Fluorescente , Cariotipagem/métodos , Gravidez , Sensibilidade e Especificidade
2.
Nucleic Acids Res ; 39(8): 3053-63, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21177650

RESUMO

The p53 protein is crucial for adapting programs of gene expression in response to stress. Recently, we revealed that this occurs partly through the formation of stress-specific p53 binding patterns. However, the mechanisms that generate these binding patterns remain largely unknown. It is not established whether the selective binding of p53 is achieved through modulation of its binding affinity to certain response elements (REs) or via a chromatin-dependent mechanism. To shed light on this issue, we used a microsphere assay for protein-DNA binding to measure p53 binding patterns on naked DNA. In parallel, we measured p53 binding patterns within chromatin using chromatin immunoprecipitation and DNase I coupled to ligation-mediated polymerase chain reaction footprinting. Through this experimental approach, we revealed that UVB and Nutlin-3 doses, which lead to different cellular outcomes, induce similar p53 binding patterns on naked DNA. Conversely, the same treatments lead to stress-specific p53 binding patterns on chromatin. We show further that altering chromatin remodeling using an histone acetyltransferase inhibitor reduces p53 binding to REs. Altogether, our results reveal that the formation of p53 binding patterns is not due to the modulation of sequence-specific p53 binding affinity. Rather, we propose that chromatin and chromatin remodeling are required in this process.


Assuntos
Cromatina/metabolismo , Elementos de Resposta , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Histona Acetiltransferases/antagonistas & inibidores , Humanos , Imidazóis/farmacologia , Piperazinas/farmacologia , Ligação Proteica , RNA Mensageiro/metabolismo , Estresse Fisiológico , Terpenos/farmacologia , Raios Ultravioleta
3.
Cancer Res ; 69(21): 8463-71, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19843844

RESUMO

p53 is a master transcription factor that prevents neoplasia and genomic instability. It is an important target for anticancer drug design. Understanding the molecular mechanisms behind its transcriptional activities in normal cells is a prerequisite to further understand the deregulation effected by mutant p53 in cancerous cells. Currently, how p53 coordinates transcription programs in response to stress remains unclear. One theory proposes that stresses induce pre-binding events that direct p53 to bind to specific response elements, whereas a second posits that, in response to stress, p53 binds most response elements and post-binding events then regulate transcription initiation. It is critical to establish the relevance of both theories and investigate whether stresses induce specific p53-binding patterns correlated with effector gene induction. Using unique in cellulo genomic footprinting experiments, we studied p53 binding to the five response elements of p21 in response to stresses and monitored p21 mRNA variant transcription. We show clear footprints of p53 bound to response elements in living cells and reveal that the binding of p53 to response elements is transient, subject to dynamic changes during stress responses, and influenced by response element pentamer orientations. We show further that stresses lead to specific p53-binding patterns correlated with particular p21 mRNA variant transcription profiles and that p53 binding is necessary but not sufficient to induce p21 transcription. Our results indicate that pre- and post-binding events act together to regulate adapted stress responses; this paves the way to the unification of pre- and post-binding event theories.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Elementos de Resposta/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Proteína Supressora de Tumor p53/metabolismo , Western Blotting , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Pegada de DNA , Primers do DNA/química , Fibroblastos/metabolismo , Imunofluorescência , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/citologia , Pele/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional , Proteína Supressora de Tumor p53/genética
4.
Genome ; 49(11): 1366-73, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17426751

RESUMO

Microsatellites are simple, tandem DNA repeats that represent unstable regions of the genome. They undergo frequent changes in tract length by base additions or deletions due to DNA polymerase slippage during replication. To characterize factors affecting the frequency of spontaneous mutations occurring in microsatellites in plants, a reporter system was used in Arabidopsis thaliana and tomato (Lycopersicon esculentum). The beta-glucuronidase (GUS) reporter system was used to measure the mutation frequency in various microsatellites (G(7), G(10), G(13), G(16), and C(16)) in somatic tissues. Our results indicate that this frequency increases with the number of repeats: a G(16) tract was almost 80-fold more mutable than a G(7) tract. Furthermore, the frequency of mutations depends on repeat orientation, as G(16) was 3-fold more mutable than C(16). The mutation rate was also found to differ markedly in Arabidopsis and tomato for an identical microsatellite. Indeed, Arabidopsis showed a 5-fold higher mutation frequency than tomato with the same G(7) reporter construct. Finally, mutation in a G(16) tract was frequent enough that mutations transmitted germinally to the next generation could be detected at a relatively high frequency.


Assuntos
Arabidopsis/genética , Repetições de Microssatélites , Mutação , Solanum lycopersicum/genética , Genes Reporter , Mutação em Linhagem Germinativa , Glucuronidase/genética , Glucuronidase/metabolismo , Especificidade da Espécie
5.
Chromosoma ; 113(4): 204-9, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15349787

RESUMO

Telomeres are composed of tandem repeated sequences, TTAGGG, that can be detected either by fluorescence in situ hybridization (FISH), more efficiently by using a peptide nucleic acid (PNA) probe, or by the primed in situ (PRINS) technique. However, the efficiency of human telomere labeling using PRINS is somewhat lower than the efficiency using PNA-FISH. To solve this problem, we developed a double-strand PRINS technique, which uses two primers, (TTAGGG)(7) and (CCCTAA)(7), to label both forward and reverse telomeric DNA strands. A total of 120 lymphocyte metaphases obtained from three normal adults were scored to evaluate the labeling efficiency based upon the telomere signal frequency present in chromatid ends and chromosome arms. As a comparison, 30 metaphases from the same three individuals were evaluated using PNA-FISH. The average labeling efficiency of PRINS was increased to a level very close to that obtained with PNA-FISH. Therefore, we demonstrated that the low labeling efficiency of human telomeres with regular PRINS was likely caused by uneven annealing of primers at the relatively short human telomere sequences, resulting in some telomere sites with very weak or absent labeling. We suggest that the present double-strand labeling protocol is critical to maximize the labeling efficiency of the human telomere sequence when using the PRINS technique.


Assuntos
Marcação in Situ com Primers/métodos , Telômero/química , Adulto , Primers do DNA/química , Humanos , Indicadores e Reagentes , Microscopia de Fluorescência , Sequências Repetitivas de Ácido Nucleico , Telômero/ultraestrutura , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA