Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(13): 5670-5684, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501683

RESUMO

PFASs are linked to serious health and environmental concerns. Among their widespread applications, PFASs are known to be used in food packaging and directly contribute to human exposure. However, information about PFASs in food packaging is scattered. Therefore, we systematically map the evidence on PFASs detected in migrates and extracts of food contact materials and provide an overview of available hazard and biomonitoring data. Based on the FCCmigex database, 68 PFASs have been identified in various food contact materials, including paper, plastic, and coated metal, by targeted and untargeted analyses. 87% of these PFASs belong to the perfluorocarboxylic acids and fluorotelomer-based compounds. Trends in chain length demonstrate that long-chain perfluoroalkyl acids continue to be found, despite years of global efforts to reduce the use of these substances. We utilized ToxPi to illustrate that hazard data are available for only 57% of the PFASs that have been detected in food packaging. For those PFASs for which toxicity testing has been performed, many adverse outcomes have been reported. The data and knowledge gaps presented here support international proposals to restrict PFASs as a group, including their use in food contact materials, to protect human and environmental health.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Humanos , Fluorocarbonos/análise , Embalagem de Alimentos , Alimentos , Poluentes Químicos da Água/análise
2.
J Leukoc Biol ; 115(2): 306-321, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-37949818

RESUMO

The role of natural killer group 2D (NKG2D) in peripheral T cells as a costimulatory receptor is well established. However, its contribution to T cell thymic education and functional imprint is unknown. Here, we report significant changes in development, receptor signaling, transcriptional program, and function in T cells from mice lacking NKG2D signaling. In C57BL/6 (B6) and OT-I mice, we found that NKG2D deficiency results in Vß chain usage changes and stagnation of the double-positive stage in thymic T cell development. We found that the expression of CD5 and CD45 in thymocytes from NKG2D deficient mice were reduced, indicating a direct influence of NKG2D on the strength of T cell receptor (TCR) signaling during the developmental stage of T cells. Depicting the functional consequences of NKG2D, peripheral OT-I NKG2D-deficient cells were unresponsive to ovalbumin peptide stimulation. Paradoxically, while αCD3/CD28 agonist antibodies led to phenotypic T cell activation, their ability to produce cytokines remained severely compromised. We found that OT-I NKG2D-deficient cells activate STAT5 in response to interleukin-15 but were unable to phosphorylate ERK or S6 upon TCR engagement, underpinning a defect in TCR signaling. Finally, we showed that NKG2D is expressed in mouse and human thymic T cells at the double-negative stage, suggesting an evolutionarily conserved function during T cell development. The data presented in this study indicate that NKG2D impacts thymic T cell development at a fundamental level by reducing the TCR threshold and affecting the functional imprint of the thymic progeny. In summary, understanding the impact of NKG2D on thymic T cell development and TCR signaling contributes to our knowledge of immune system regulation, immune dysregulation, and the design of immunotherapies.


Assuntos
Subfamília K de Receptores Semelhantes a Lectina de Células NK , Timo , Animais , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Timócitos , Receptores de Antígenos de Linfócitos T
3.
Mol Ther Oncolytics ; 31: 100751, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38075241

RESUMO

CD33 and CD123 are expressed on the surface of human acute myeloid leukemia blasts and other noncancerous tissues such as hematopoietic stem cells. On-target off-tumor toxicities may limit chimeric antigen receptor T cell therapies that target both CD33 and CD123. To overcome this limitation, we developed bispecific human CD33/CD123 chimeric antigen receptor (CAR) T cells with an "AND" logic gate. We produced novel CD33 and CD123 scFvs from monoclonal antibodies that bound CD33 and CD123 and activated T cells. Screening of CD33 and CD123 CAR T cells for cytotoxicity, cytokine production, and proliferation was performed, and we selected scFvs for CD33/CD123 bispecific CARs. The bispecific CARs split 4-1BB co-stimulation on one scFv and CD3ζ on the other. In vitro testing of cytokine secretion and cytotoxicity resulted in selecting bispecific CAR 1 construct for in vivo analysis. The CD33/CD123 bispecific CAR T cells were able to control acute myeloid leukemia (AML) in a xenograft AML mouse model similar to monospecific CD33 and CD123 CAR T cells while showing no on-target off-tumor effects. Based on our findings, human CD33/CD123 bispecific CAR T cells are a promising cell-based approach to prevent AML and support clinical investigation.

4.
Environ Int ; 180: 108161, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37758599

RESUMO

Food contact materials (FCMs) and food contact articles are ubiquitous in today's globalized food system. Chemicals migrate from FCMs into foodstuffs, so called food contact chemicals (FCCs), but current regulatory requirements do not sufficiently protect public health from hazardous FCCs because only individual substances used to make FCMs are tested and mostly only for genotoxicity while endocrine disruption and other hazard properties are disregarded. Indeed, FCMs are a known source of a wide range of hazardous chemicals, and they likely contribute to highly prevalent non-communicable diseases. FCMs can also include non-intentionally added substances (NIAS), which often are unknown and therefore not subject to risk assessment. To address these important shortcomings, we outline how the safety of FCMs may be improved by (1) testing the overall migrate, including (unknown) NIAS, of finished food contact articles, and (2) expanding toxicological testing beyond genotoxicity to multiple endpoints associated with non-communicable diseases relevant to human health. To identify mechanistic endpoints for testing, we group chronic health outcomes associated with chemical exposure into Six Clusters of Disease (SCOD) and we propose that finished food contact articles should be tested for their impacts on these SCOD. Research should focus on developing robust, relevant, and sensitive in-vitro assays based on mechanistic information linked to the SCOD, e.g., through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants. Implementing this vision will improve prevention of chronic diseases that are associated with hazardous chemical exposures, including from FCMs.


Assuntos
Contaminação de Alimentos , Doenças não Transmissíveis , Humanos , Contaminação de Alimentos/análise , Saúde Pública , Embalagem de Alimentos , Alimentos , Substâncias Perigosas/toxicidade
5.
Crit Rev Food Sci Nutr ; 63(28): 9425-9435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35585831

RESUMO

Food packaging is important for today's globalized food system, but food contact materials (FCMs) can also be a source of hazardous chemicals migrating into foodstuffs. Assessing the impacts of FCMs on human health requires a comprehensive identification of the chemicals they contain, the food contact chemicals (FCCs). We systematically compiled the "database on migrating and extractable food contact chemicals" (FCCmigex) using information from 1210 studies. We found that to date 2881 FCCs have been detected, in a total of six FCM groups (Plastics, Paper & Board, Metal, Multi-materials, Glass & Ceramic, and Other FCMs). 65% of these detected FCCs were previously not known to be used in FCMs. Conversely, of the more than 12'000 FCCs known to be used, only 1013 are included in the FCCmigex database. Plastic is the most studied FCM with 1975 FCCs detected. Our findings expand the universe of known FCCs to 14,153 chemicals. This knowledge contributes to developing non-hazardous FCMs that lead to safer food and support a circular economy.


Assuntos
Contaminação de Alimentos , Embalagem de Alimentos , Humanos , Contaminação de Alimentos/análise , Substâncias Perigosas/análise , Bases de Dados Factuais , Plásticos
6.
J Immunother ; 46(1): 5-13, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36378147

RESUMO

Higher γδ T cell counts in patients with malignancies are associated with better survival. However, γδ T cells are rare in the blood and functionally impaired in patients with malignancies. Promising results are reported on the treatment of various malignancies with in vivo expansion of autologous γδ T cells using zoledronic acid (zol) and interleukin-2 (IL-2). Here we demonstrated that zol and IL-2, in combination with a novel genetically engineered K-562 CD3scFv/CD137L/CD28scFv/IL15RA quadruplet artificial antigen-presenting cell (aAPC), efficiently expand allogeneic donor-derived γδ T cells using a Good Manufacturing Practice (GMP) compliant protocol sufficient to achieve cell doses for future clinical use. We achieved a 633-fold expansion of γδ T cells after day 10 of coculture with aAPC, which exhibited central (47%) and effector (43%) memory phenotypes. In addition, >90% of the expanded γδ T cells expressed NKG2D, although they have low cell surface expression of PD1 and LAG3 inhibitory checkpoint receptors. In vitro real-time cytotoxicity analysis showed that expanded γδ T cells were effective in killing target cells. Our results demonstrate that large-scale ex vivo expansion of donor-derived γδ T cells in a GMP-like setting can be achieved with the use of quadruplet aAPC and zol/IL-2 for clinical application.


Assuntos
Células Apresentadoras de Antígenos , Interleucina-2 , Interleucina-2/farmacologia , Linfócitos T
7.
J Hazard Mater ; 437: 129167, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35897167

RESUMO

The EU Chemicals Strategy for Sustainability (CSS) aims at removing the most harmful chemicals from consumer products, including from food contact materials (FCMs). If implemented as intended, the CSS has the potential to significantly improve the protection of public health by banning the use of chemicals of concern that are carcinogenic, mutagenic, or toxic to reproduction (CMRs), or persistent and bioaccumulative, or endocrine-disrupting chemicals (EDCs) in FCMs. However, until now an overview of such food contact chemicals of concern (FCCoCs) has not been available, because the CSS is fairly recent. Therefore, we here systematically analyze the food contact chemicals listed for intentional use in FCMs and identify known FCCoCs. We present a list of 388 FCCoCs that should be phased-out from use. Of these, 352 are CMRs, four are per- and polyfluoroalkyl substances (PFAS), and 127 have empirical evidence for presence in FCMs. Importantly, 30 FCCoCs with evidence for presence are monomers of which 22 have evidence for migration into foodstuff showing that monomers in FCMs indeed become relevant for human exposure. Our findings justify moving away from a risk- towards a hazard-based approach to regulation of chemicals in FCMs.


Assuntos
Exposição Dietética/estatística & dados numéricos , Contaminação de Alimentos , Substâncias Perigosas , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , União Europeia , Alimentos , Embalagem de Alimentos , Humanos , Poluentes Orgânicos Persistentes , Saúde Pública , Reprodução
8.
Cancers (Basel) ; 14(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35267549

RESUMO

Engineered T cells expressing chimeric antigen receptors (CARs) on their cell surface can redirect antigen specificity. This ability makes CARs one of the most promising cancer therapeutic agents. CAR-T cells for treating patients with B cell hematological malignancies have shown impressive results. Clinical manifestation has yielded several trials, so far five CAR-T cell therapies have received US Food and Drug Administration (FDA) approval. However, emerging clinical data and recent findings have identified some immune-related toxicities due to CAR-T cell therapy. Given the outcome and utilization of the same proof of concept, further investigation in other hematological malignancies, such as leukemias, is warranted. This review discusses the previous findings from the pre-clinical and human experience with CAR-T cell therapy. Additionally, we describe recent developments of novel targets for adoptive immunotherapy. Here we present some of the early findings from the pre-clinical studies of CAR-T cell modification through advances in genetic engineering, gene editing, cellular programming, and formats of synthetic biology, along with the ongoing efforts to restore the function of exhausted CAR-T cells through epigenetic remodeling. We aim to shed light on the new targets focusing on acute myeloid leukemia (AML).

9.
Mol Ther Oncolytics ; 24: 887-896, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35317526

RESUMO

Allogeneic "off-the-shelf" (OTS) chimeric antigen receptor T cells (CAR-T cells) hold promise for more accessible CAR-T therapy. Here, we report a novel and simple way to make allogeneic OTS T cells targeting cancer. By engineering T cells with a bispecific T cell engager (BiTE), both TCRαß and CD3ε expression on the T cell surface are dramatically reduced. BiTE-engineered T (BiTE-T) cells show reduced reaction to TCR stimulation in vitro and have low risk of graft-versus-host disease (GvHD) in vivo. BiTE-T cells down-regulated CD3ε/TCRαß on bystander T cells by releasing BiTEs. BiTE-T cells produce much fewer cytokines and are comparable to CAR-T cells on anti-cancer efficacy in xenograft mouse models with pre-existing HLA-mismatched T cells. Co-expressing co-stimulatory factors or T cell-promoting cytokines enhanced BiTE-T cells. Our study suggests CD3ε engagement could be a new strategy for allogeneic T cell therapy worthy of further evaluation.

10.
J Immunother Cancer ; 9(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34706886

RESUMO

BACKGROUND: Co-stimulatory signals regulate the expansion, persistence, and function of chimeric antigen receptor (CAR) T cells. Most studies have focused on the co-stimulatory domains CD28 or 4-1BB. CAR T cell persistence is enhanced by 4-1BB co-stimulation leading to nuclear factor kappa B (NF-κB) signaling, while resistance to exhaustion is enhanced by mutations of the CD28 co-stimulatory domain. METHODS: We hypothesized that a third-generation CAR containing 4-1BB and CD28 with only PYAP signaling motif (mut06) would provide beneficial aspects of both. We designed CD19-specific CAR T cells with either 4-1BB or mut06 together with the combination of both and evaluated their immune-phenotype, cytokine secretion, real-time cytotoxic ability and polyfunctionality against CD19-expressing cells. We analyzed lymphocyte-specific protein tyrosine kinase (LCK) recruitment by the different constructs by immunoblotting. We further determined their ability to control growth of Raji cells in NOD scid gamma (NSG) mice. We also engineered bi-specific CARs against CD20/CD19 combining 4-1BB and mut06 and performed repeated in vitro antigenic stimulation experiments to evaluate their expansion, memory phenotype and phenotypic (PD1+CD39+) and functional exhaustion. Bi-specific CAR T cells were transferred into Raji or Nalm6-bearing mice to study their ability to eradicate CD20/CD19-expressing tumors. RESULTS: Co-stimulatory domains combining 4-1BB and mut06 confers CAR T cells with an increased central memory phenotype, expansion, and LCK recruitment to the CAR. This enhanced function was dependent on the positioning of the two co-stimulatory domains. A bi-specific CAR targeting CD20/CD19, incorporating 4-1BB and mut06 co-stimulation, showed enhanced antigen-dependent in vitro expansion with lower exhaustion-associated markers. Bi-specific CAR T cells exhibited improved in vivo antitumor activity with increased persistence and decreased exhaustion. CONCLUSION: These results demonstrate that co-stimulation combining 4-1BB with an optimized form of CD28 is a valid approach to optimize CAR T cell function. Cells with both mono-specific and bi-specific versions of this design showed enhanced in vitro and in vivo features such as expansion, persistence and resistance to exhaustion. Our observations validate the approach and justify clinical studies to test the efficacy and safety of this CAR in patients.


Assuntos
Antígenos CD28/metabolismo , Engenharia Celular/métodos , Neoplasias/genética , Receptores de Antígenos Quiméricos/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos
11.
Front Immunol ; 12: 705307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512628

RESUMO

While apoptosis plays a role in B-cell self-tolerance, its significance in preventing autoimmunity remains unclear. Here, we report that dysregulated B cell apoptosis leads to delayed onset autoimmune phenotype in mice. Our longitudinal studies revealed that mice with B cell-specific deletion of pro-apoptotic Bim (BBimfl/fl ) have an expanded B cell compartment with a notable increase in transitional, antibody secreting and recently described double negative (DN) B cells. They develop greater hypergammaglobulinemia than mice lacking Bim in all cells and accumulate several autoantibodies characteristic of Systemic Lupus Erythematosus (SLE) and related Sjögren's Syndrome (SS) including anti-nuclear, anti-Ro/SSA and anti-La/SSB at a level comparable to NODH2h4 autoimmune mouse model. Furthermore, lymphocytes infiltrated the tissues including submandibular glands and formed follicle-like structures populated with B cells, plasma cells and T follicular helper cells indicative of ongoing immune reaction. This autoimmunity was ameliorated upon deletion of Bruton's tyrosine kinase (Btk) gene, which encodes a key B cell signaling protein. These studies suggest that Bim-mediated apoptosis suppresses and B cell tyrosine kinase signaling promotes B cell-mediated autoimmunity.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Apoptose/fisiologia , Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Linfócitos B/imunologia , Proteína 11 Semelhante a Bcl-2/fisiologia , Tirosina Quinase da Agamaglobulinemia/deficiência , Tirosina Quinase da Agamaglobulinemia/fisiologia , Animais , Especificidade de Anticorpos , Autoanticorpos/sangue , Linfócitos B/enzimologia , Linfócitos B/patologia , Proteína 11 Semelhante a Bcl-2/deficiência , Divisão Celular , Células Cultivadas , Hipergamaglobulinemia/imunologia , Tolerância Imunológica/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos/imunologia , Síndrome de Sjogren/imunologia , Linfócitos T/imunologia
12.
Cancer J ; 27(2): 92-97, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33750067

RESUMO

ABSTRACT: The US Food and Drug Administration has approved 3 chimeric antigen receptor (CAR) T-cell therapies. For continued breakthroughs, novel CAR designs are needed. This includes different antigen-binding domains such as antigen-ligand binding partners and variable lymphocyte receptors. Another recent advancement in CAR design is Boolean logic gates that can minimize on-target, off-tumor toxicities. Recent studies on the optimization of costimulatory signaling have also shown how CAR design can impact function. By using specific signaling pathways and transcription factors, CARs can impact T-cell gene expression to enhance function. By using these techniques, the promise of CAR T-cell therapies for solid tumors can be fulfilled.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T
13.
Cancer Immunol Res ; 9(1): 62-74, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33188139

RESUMO

An obstacle to the development of chimeric antigen receptor (CAR) T cells is the limited understanding of CAR T-cell biology and the mechanisms behind their antitumor activity. We and others have shown that CARs with a CD28 costimulatory domain drive high T-cell activation, which leads to exhaustion and shortened persistence. This work led us to hypothesize that by incorporating null mutations of CD28 subdomains (YMNM, PRRP, or PYAP), we could optimize CAR T-cell costimulation and enhance function. In vivo, we found that mice given CAR T cells with only a PYAP CD28 endodomain had a significant survival advantage, with 100% of mice alive after 62 days compared with 50% for mice with an unmutated endodomain. We observed that mutant CAR T cells remained more sensitive to antigen after ex vivo antigen and PD-L1 stimulation, as demonstrated by increased cytokine production. The mutant CAR T cells also had a reduction of exhaustion-related transcription factors and genes such as Nfatc1, Nr42a, and Pdcd1 Our results demonstrated that CAR T cells with a mutant CD28 endodomain have better survival and function. This work allows for the development of enhanced CAR T-cell therapies by optimizing CAR T-cell costimulation.


Assuntos
Antígenos CD28/antagonistas & inibidores , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Citocinas/biossíntese , Feminino , Humanos , Imunoterapia Adotiva , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fatores de Transcrição NFATC/genética , Células NIH 3T3 , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptor de Morte Celular Programada 1/genética , Receptores de Antígenos Quiméricos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Clin Invest ; 130(9): 4652-4662, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32437331

RESUMO

Graft-versus-host disease (GVHD) remains an important cause of morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HCT). For decades, GVHD prophylaxis has included calcineurin inhibitors, despite their incomplete efficacy and impairment of graft-versus-leukemia (GVL). Distinct from pharmacologic immune suppression, we have developed what we believe is a novel, human CD83-targeted chimeric antigen receptor (CAR) T cell for GVHD prevention. CD83 is expressed on allo-activated conventional CD4+ T cells (Tconvs) and proinflammatory dendritic cells (DCs), which are both implicated in GVHD pathogenesis. Human CD83 CAR T cells eradicate pathogenic CD83+ target cells, substantially increase the ratio of regulatory T cells (Tregs) to allo-activated Tconvs, and provide durable prevention of xenogeneic GVHD. CD83 CAR T cells are also capable of treating xenogeneic GVHD. We show that human acute myeloid leukemia (AML) expresses CD83 and that myeloid leukemia cell lines are readily killed by CD83 CAR T cells. Human CD83 CAR T cells are a promising cell-based approach to preventing 2 critical complications of allo-HCT - GVHD and relapse. Thus, the use of human CD83 CAR T cells for GVHD prevention and treatment, as well as for targeting CD83+ AML, warrants clinical investigation.


Assuntos
Transferência Adotiva , Antígenos CD/imunologia , Linfócitos T CD4-Positivos/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas , Imunoglobulinas/imunologia , Leucemia Mieloide Aguda/terapia , Glicoproteínas de Membrana/imunologia , Proteínas de Neoplasias/imunologia , Receptores de Antígenos Quiméricos/imunologia , Aloenxertos , Animais , Linfócitos T CD4-Positivos/transplante , Linhagem Celular Tumoral , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Camundongos , Antígeno CD83
15.
Environ Health ; 19(1): 25, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32122363

RESUMO

Food packaging is of high societal value because it conserves and protects food, makes food transportable and conveys information to consumers. It is also relevant for marketing, which is of economic significance. Other types of food contact articles, such as storage containers, processing equipment and filling lines, are also important for food production and food supply. Food contact articles are made up of one or multiple different food contact materials and consist of food contact chemicals. However, food contact chemicals transfer from all types of food contact materials and articles into food and, consequently, are taken up by humans. Here we highlight topics of concern based on scientific findings showing that food contact materials and articles are a relevant exposure pathway for known hazardous substances as well as for a plethora of toxicologically uncharacterized chemicals, both intentionally and non-intentionally added. We describe areas of certainty, like the fact that chemicals migrate from food contact articles into food, and uncertainty, for example unidentified chemicals migrating into food. Current safety assessment of food contact chemicals is ineffective at protecting human health. In addition, society is striving for waste reduction with a focus on food packaging. As a result, solutions are being developed toward reuse, recycling or alternative (non-plastic) materials. However, the critical aspect of chemical safety is often ignored. Developing solutions for improving the safety of food contact chemicals and for tackling the circular economy must include current scientific knowledge. This cannot be done in isolation but must include all relevant experts and stakeholders. Therefore, we provide an overview of areas of concern and related activities that will improve the safety of food contact articles and support a circular economy. Our aim is to initiate a broader discussion involving scientists with relevant expertise but not currently working on food contact materials, and decision makers and influencers addressing single-use food packaging due to environmental concerns. Ultimately, we aim to support science-based decision making in the interest of improving public health. Notably, reducing exposure to hazardous food contact chemicals contributes to the prevention of associated chronic diseases in the human population.


Assuntos
Contaminação de Alimentos/análise , Embalagem de Alimentos/métodos , Substâncias Perigosas/efeitos adversos , Humanos , Plásticos/efeitos adversos
16.
J Immunother ; 43(3): 79-88, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31834208

RESUMO

Adoptive cell therapy with ex vivo expanded tumor infiltrating lymphocytes or gene engineering T cells expressing chimeric antigen receptors (CAR) is a promising treatment for cancer patients. This production utilizes T-cell activation and transduction with activation beads and RetroNectin, respectively. However, the high cost of production is an obstacle for the broad clinical application of novel immunotherapeutic cell products. To facilitate production we refined our approach by using artificial antigen presenting cells (aAPCs) with receptors that ligate CD3, CD28, and the CD137 ligand (CD137L or 41BBL), as well as express the heparin binding domain (HBD), which binds virus for gene-transfer. We have used these aAPC for ex vivo gene engineering and expansion of tumor infiltrating lymphocytes and CAR T cells. We found that aAPCs can support efficacious T-cell expansion and transduction. Moreover, aAPCs expanded T cells exhibit higher production of IFN-γ and lower traits of T-cell exhaustion compared with bead expanded T cells. Our results suggest that aAPC provide a more physiological stimulus for T-cell activation than beads that persistently ligate T cells. The use of a renewable cell line to replace 2 critical reagents (beads and retronectin) for CAR T-cell production can significantly reduce the cost of production and make these therapies more accessible to patients.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Imunoterapia Adotiva , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos , Citotoxicidade Imunológica , Técnicas de Transferência de Genes , Humanos , Imunofenotipagem , Imunoterapia Adotiva/métodos , Células K562 , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia
17.
Environ Health Perspect ; 126(8): 84502, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30235423

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are man-made chemicals that contain at least one perfluoroalkyl moiety, [Formula: see text]. To date, over 4,000 unique PFASs have been used in technical applications and consumer products, and some of them have been detected globally in human and wildlife biomonitoring studies. Because of their extraordinary persistence, human and environmental exposure to PFASs will be a long-term source of concern. Some PFASs such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) have been investigated extensively and thus regulated, but for many other PFASs, knowledge about their current uses and hazards is still very limited or missing entirely. To address this problem and prepare an action plan for the assessment and management of PFASs in the coming years, a group of more than 50 international scientists and regulators held a two-day workshop in November, 2017. The group identified both the respective needs of and common goals shared by the scientific and the policy communities, made recommendations for cooperative actions, and outlined how the science-policy interface regarding PFASs can be strengthened using new approaches for assessing and managing highly persistent chemicals such as PFASs. https://doi.org/10.1289/EHP4158.


Assuntos
Exposição Ambiental/prevenção & controle , Poluentes Ambientais , Poluição Ambiental/prevenção & controle , Fluorocarbonos , Monitoramento Ambiental , Humanos
18.
JCI Insight ; 3(18)2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30232281

RESUMO

Chimeric antigen receptors (CARs) have an antigen-binding domain fused to transmembrane, costimulatory, and CD3ζ domains. Two CARs with regulatory approval include a CD28 or 4-1BB costimulatory domain. While both CARs achieve similar clinical outcomes, biologic differences have become apparent but not completely understood. Therefore, in this study we aimed to identify mechanistic differences between 4-1BB and CD28 costimulation that contribute to the biologic differences between the 2 CARs and could be exploited to enhance CAR T cell function. Using CD19-targeted CAR T cells with 4-1BB we determined that enhancement of T cell function is driven by NF-κB. Comparison to CAR T cells with CD28 also revealed that 4-1BB is associated with more antiapoptotic proteins and dependence on persistence for B cell killing. While TNF receptor-associated factor 2 (TRAF2) has been presupposed to be required for 4-1BB costimulation in CAR T cells, we determined that TRAF1 and TRAF3 are also critical. We observed that TRAFs impacted CAR T viability and proliferation, as well as cytotoxicity and/or cytokines, in part by regulating NF-κB. Our study demonstrates how 4-1BB costimulation in CAR T cells impacts antitumor eradication and clinical outcomes and has implications for enhanced CAR design.


Assuntos
Ligante 4-1BB/metabolismo , NF-kappa B/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Ligante 4-1BB/genética , Animais , Antígenos CD19 , Linfócitos B , Antígenos CD28 , Linhagem Celular , Receptores Coestimuladores e Inibidores de Linfócitos T , Citocinas/metabolismo , Feminino , Terapia Genética , Proteínas de Homeodomínio/genética , Humanos , Imunoterapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Linfócitos T/imunologia , Fator 1 Associado a Receptor de TNF/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Fator de Transcrição RelA/metabolismo , Transcriptoma , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Infect Immun ; 86(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29311243

RESUMO

The host employs both cell-autonomous and system-level responses to limit pathogen replication in the initial stages of infection. Previously, we reported that the eukaryotic initiation factor 2α (eIF2α) kinases heme-regulated inhibitor (HRI) and protein kinase R (PKR) control distinct cellular and immune-related activities in response to diverse bacterial pathogens. Specifically for Listeria monocytogenes, there was reduced translocation of the pathogen to the cytosolic compartment in HRI-deficient cells and consequently reduced loading of pathogen-derived antigens on major histocompatibility complex class I (MHC-I) complexes. Here we show that Hri-/- mice, as well as wild-type mice treated with an HRI inhibitor, are more susceptible to listeriosis. In the first few hours of L. monocytogenes infection, there was much greater pathogen proliferation in the liver of Hri-/- mice than in the liver of Hri+/+ mice. Further, there was a rapid increase of serum interleukin-6 (IL-6) levels in Hri+/+ mice in the first few hours of infection whereas the increase in IL-6 levels in Hri-/- mice was notably delayed. Consistent with these in vivo findings, the rate of listeriolysin O (LLO)-dependent pathogen efflux from infected Hri-/- macrophages and fibroblasts was significantly higher than the rate seen with infected Hri+/+ cells. Treatment of cells with an eIF2α kinase activator enhanced both the HRI-dependent and PKR-dependent infection phenotypes, further indicating the pharmacologically malleability of this signaling pathway. Collectively, these results suggest that HRI mediates the cellular confinement and killing of virulent L. monocytogenes in addition to promoting a system-level cytokine response and that both are required to limit pathogen replication during the first few hours of infection.


Assuntos
Listeria monocytogenes/fisiologia , Listeriose/enzimologia , Proteínas Serina-Treonina Quinases/imunologia , Animais , Feminino , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Listeria monocytogenes/genética , Listeriose/genética , Listeriose/imunologia , Listeriose/microbiologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteínas Serina-Treonina Quinases/genética
20.
Environ Sci Technol ; 51(8): 4482-4493, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28323424

RESUMO

Here a new global emission inventory of C4-C10 perfluoroalkanesulfonic acids (PFSAs) from the life cycle of perfluorooctanesulfonyl fluoride (POSF)-based products in 1958-2030 is presented. In particular, we substantially improve and expand the previous frameworks by incorporating missing pieces (e.g., emissions to soil through land treatment, overlooked precursors) and updating parameters (e.g., emission factors, degradation half-lives). In 1958-2015, total direct and indirect emissions of perfluorooctanesulfonic acid (PFOS) are estimated as 1228-4930 tonnes, and emissions of PFOS precursors are estimated as 1230-8738 tonnes and approximately 670 tonnes for x-perfluorooctanesulfonamides/sulfonamido ethanols (xFOSA/Es) and POSF, respectively. Most of these emissions occurred between 1958 and 2002, followed by a substantial decrease. This confirms the positive effect of the ongoing transition to phase out POSF-based products, although this transition may still require substantial time and cause substantial additional releases of PFOS (8-153 tonnes) and xFOSA/Es (4-698 tonnes) in 2016 to 2030. The modeled environmental concentrations obtained by coupling the emission inventory and a global multimedia mass-balance model generally agree well with reported field measurements, suggesting that the inventory captures the actual emissions of PFOS and xFOSA/Es for the time being despite remaining uncertainties. Our analysis of the key uncertainties and open questions of and beyond the inventory shows that, among others, degradation of side-chain fluorinated polymers in the environment and landfills can be a long-term, (potentially) substantial source of PFOS.


Assuntos
Fluorocarbonos , Modelos Teóricos , Meio Ambiente , Monitoramento Ambiental , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA