Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
mBio ; 13(3): e0086222, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35475644

RESUMO

Strains of the freshwater cyanobacterium Synechococcus elongatus were first isolated approximately 60 years ago, and PCC 7942 is well established as a model for photosynthesis, circadian biology, and biotechnology research. The recent isolation of UTEX 3055 and subsequent discoveries in biofilm and phototaxis phenotypes suggest that lab strains of S. elongatus are highly domesticated. We performed a comprehensive genome comparison among the available genomes of S. elongatus and sequenced two additional laboratory strains to trace the loss of native phenotypes from the standard lab strains and determine the genetic basis of useful phenotypes. The genome comparison analysis provides a pangenome description of S. elongatus, as well as correction of extensive errors in the published sequence for the type strain PCC 6301. The comparison of gene sets and single nucleotide polymorphisms (SNPs) among strains clarifies strain isolation histories and, together with large-scale genome differences, supports a hypothesis of laboratory domestication. Prophage genes in laboratory strains, but not UTEX 3055, affect pigmentation, while unique genes in UTEX 3055 are necessary for phototaxis. The genomic differences identified in this study include previously reported SNPs that are, in reality, sequencing errors, as well as SNPs and genome differences that have phenotypic consequences. One SNP in the circadian response regulator rpaA that has caused confusion is clarified here as belonging to an aberrant clone of PCC 7942, used for the published genome sequence, that has confounded the interpretation of circadian fitness research. IMPORTANCE Synechococcus elongatus is a versatile and robust model cyanobacterium for photosynthetic metabolism and circadian biology research, with utility as a biological production platform. We compared the genomes of closely related S. elongatus strains to create a pangenome annotation to aid gene discovery for novel phenotypes. The comparative genomic analysis revealed the need for a new sequence of the species type strain PCC 6301 and includes two new sequences for S. elongatus strains PCC 6311 and PCC 7943. The genomic comparison revealed a pattern of early laboratory domestication of strains, clarifies the relationship between the strains PCC 6301 and UTEX 2973, and showed that differences in large prophage regions, operons, and even single nucleotides have effects on phenotypes as wide-ranging as pigmentation, phototaxis, and circadian gene expression.


Assuntos
Synechococcus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genômica , Fenótipo , Fotossíntese , Synechococcus/metabolismo
2.
Nat Commun ; 13(1): 521, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082297

RESUMO

HIV elite controllers maintain a population of CD4 + T cells endowed with high avidity for Gag antigens and potent effector functions. How these HIV-specific cells avoid infection and depletion upon encounter with the virus remains incompletely understood. Ex vivo characterization of single Gag-specific CD4 + T cells reveals an advanced Th1 differentiation pattern in controllers, except for the CCR5 marker, which is downregulated compared to specific cells of treated patients. Accordingly, controller specific CD4 + T cells show decreased susceptibility to CCR5-dependent HIV entry. Two controllers carried biallelic mutations impairing CCR5 surface expression, indicating that in rare cases CCR5 downregulation can have a direct genetic cause. Increased expression of ß-chemokine ligands upon high-avidity antigen/TCR interactions contributes to autocrine CCR5 downregulation in controllers without CCR5 mutations. These findings suggest that genetic and functional regulation of the primary HIV coreceptor CCR5 play a key role in promoting natural HIV control.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Controladores de Elite , Infecções por HIV/imunologia , HIV-1/imunologia , Receptores CCR5/metabolismo , Internalização do Vírus , Quimiocinas , Regulação para Baixo , Regulação da Expressão Gênica , Produtos do Gene gag/metabolismo , Infecções por HIV/virologia , Antígenos de Histocompatibilidade Classe II , Humanos , Mutação , Receptores CCR5/genética , Receptores CXCR3
3.
Transbound Emerg Dis ; 69(3): 1387-1403, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33840161

RESUMO

Ticks are involved in the transmission of various pathogens and several tick-borne diseases cause significant problems for the health of humans and livestock. The composition of viral communities in ticks and their interactions with pathogens, is poorly understood, particularly in Eastern Europe, an area that represents a major hub for animal-arthropod vectors exchanges (e.g., via bird migrations). The aim of this study was to describe the virome of Dermacentor sp., Rhipicephalus sp. and Haemaphysalis sp. ticks collected from relatively little studied regions of Romania (Iasi and Tulcea counties) located at the intersection of various biotopes, countries and routes of migrations. We also focused the study on viruses that could potentially have relevance for human and animal health. In 2019, more than 500 ticks were collected from the vegetation and from small ruminants and analysed by high-throughput transcriptome sequencing. Among the viral communities infecting Romanian ticks, viruses belonging to the Flaviviridae, Phenuiviridae and Nairoviridae families were identified and full genomes were derived. Phylogenetic analyses placed them in clades where mammalian isolates are found, suggesting that these viruses could constitute novel arboviruses. The characterization of these communities increase the knowledge of the diversity of viruses in Eastern Europe and provides a basis for further studies about the interrelationship between ticks and tick-borne viruses.


Assuntos
Dermacentor , Ixodidae , Vírus de RNA , Rhipicephalus , Vírus , Animais , Humanos , Mamíferos , Filogenia , Saúde Pública , Romênia/epidemiologia , Viroma
4.
Viruses ; 13(9)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34578272

RESUMO

Rodents are important reservoirs of numerous viruses, some of which have significant impacts on public health. Ecosystem disturbances and decreased host species richness have been associated with the emergence of zoonotic diseases. In this study, we aimed at (a) characterizing the viral diversity in seven neotropical rodent species living in four types of habitats and (b) exploring how the extent of environmental disturbance influences this diversity. Through a metagenomic approach, we identified 77,767 viral sequences from spleen, kidney, and serum samples. These viral sequences were attributed to 27 viral families known to infect vertebrates, invertebrates, plants, and amoeba. Viral diversities were greater in pristine habitats compared with disturbed ones, and lowest in peri-urban areas. High viral richness was observed in savannah areas. Differences in these diversities were explained by rare viruses that were generally more frequent in pristine forest and savannah habitats. Moreover, changes in the ecology and behavior of rodent hosts, in a given habitat, such as modifications to the diet in disturbed vs. pristine forests, are major determinants of viral composition. Lastly, the phylogenetic relationships of four vertebrate-related viral families (Polyomaviridae, Flaviviridae, Togaviridae, and Phenuiviridae) highlighted the wide diversity of these viral families, and in some cases, a potential risk of transmission to humans. All these findings provide significant insights into the diversity of rodent viruses in Amazonia, and emphasize that habitats and the host's dietary ecology may drive viral diversity. Linking viral richness and abundance to the ecology of their hosts and their responses to habitat disturbance could be the starting point for a better understanding of viral emergence and for future management of ecosystems.


Assuntos
Ecossistema , Variação Genética , Roedores/virologia , Vírus/classificação , Vírus/genética , Zoonoses/virologia , Animais , Ecologia , Florestas , Metagenoma , Filogenia , Zoonoses/transmissão
5.
Microb Genom ; 7(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34279212

RESUMO

Travel to tropical regions is associated with high risk of acquiring extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-E) that are typically cleared in less than 3 months following return. The conditions leading to persistent carriage that exceeds 3 months in some travellers require investigation. Whole-genome sequencing (Illumina MiSeq) was performed on the 82 ESBL-E isolates detected upon return and 1, 2, 3, 6 and 12 months later from the stools of 11 long-term (>3 months) ESBL-E carriers following travel abroad. One to five different ESBL Escherichia coli strains were detected per traveller upon return, and this diminished to one after 3 months. Long-term carriage was due to the presence of the same ESBL E. coli strain, for more than 3 months, in 9 out of 11 travellers, belonging to epidemic sequence type complexes (STc 10, 14, 38, 69, 131 and 648). The mean carriage duration of strains belonging to phylogroups B2/D/F, associated with extra-intestinal virulence, was higher than that for commensal-associated A/B1/E phylogroups (3.5 vs 0.5 months, P=0.021). Genes encoding iron capture systems (fyuA, irp), toxins (senB, sat), adhesins (flu, daaF, afa/nfaE, pap, ecpA) and colicin (cjrA) were more often present in persistent strains than in transient ones. Single-nucleotide polymorphism (SNP) analysis in persistent strains showed a maximum divergence of eight SNPs over 12 months without signs of adaptation. Genomic plasticity was observed during the follow-up with the loss or gain of mobile genetic elements such as plasmids, integrons and/or transposons that may contain resistance genes at different points in the follow-up. Long-term colonization of ESBL-E following travel is primarily due to the acquisition of E. coli strains belonging to epidemic clones and harbouring 'virulence genes', allowing good adaptation to the intestinal microbiota.


Assuntos
Portador Sadio/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Viagem , beta-Lactamases/genética , Escherichia coli/classificação , Escherichia coli/patogenicidade , Microbioma Gastrointestinal/genética , Genoma Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequências Repetitivas Dispersas/genética , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento Completo do Genoma
6.
Microb Genom ; 7(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33529148

RESUMO

Mycobacterium microti is an animal-adapted member of the Mycobacterium tuberculosis complex (MTBC), which was originally isolated from voles, but has more recently also been isolated from other selected mammalian hosts, including occasionally from humans. Here, we have generated and analysed the complete genome sequences of five representative vole and clinical M. microti isolates using PacBio- and Illumina-based technologies, and have tested their virulence and vaccine potential in SCID (severe combined immune deficient) mouse and/or guinea pig infection models. We show that the clinical isolates studied here cluster separately in the phylogenetic tree from vole isolates and other clades from publicly available M. microti genome sequences. These data also confirm that the vole and clinical M. microti isolates were all lacking the specific RD1mic region, which in other tubercle bacilli encodes the ESX-1 type VII secretion system. Biochemical analysis further revealed marked phenotypic differences between isolates in type VII-mediated secretion of selected PE and PPE proteins, which in part were attributed to specific genetic polymorphisms. Infection experiments in the highly susceptible SCID mouse model showed that the clinical isolates were significantly more virulent than the tested vole isolates, but still much less virulent than the M. tuberculosis H37Rv control strain. The strong attenuation of the ATCC 35872 vole isolate in immunocompromised mice, even compared to the attenuated BCG (bacillus Calmette-Guérin) vaccine, and its historic use in human vaccine trials encouraged us to test this strain's vaccine potential in a guinea pig model, where it demonstrated similar protective efficacy as a BCG control, making it a strong candidate for vaccination of immunocompromised individuals in whom BCG vaccination is contra-indicated. Overall, we provide new insights into the genomic and phenotypic variabilities and particularities of members of an understudied clade of the MTBC, which all share a recent common ancestor that is characterized by the deletion of the RD1mic region.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Vacinas Bacterianas/administração & dosagem , Deleção de Genes , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/patogenicidade , Tuberculose/prevenção & controle , Sequenciamento Completo do Genoma/métodos , Animais , Arvicolinae/microbiologia , Vacinas Bacterianas/genética , Modelos Animais de Doenças , Cobaias , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Camundongos SCID , Mycobacterium tuberculosis/genética , Filogenia
7.
Microbiol Resour Announc ; 9(42)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060269

RESUMO

We report the nearly complete genome sequence of an enterovirus 99 strain (Cpz-IJC08) detected in a healthy chimpanzee from the Tchimpounga Sanctuary in the Republic of Congo. According to the phylogeny, Cpz-IJC08 clustered with Cpz-IJC04, a previously identified chimpanzee enterovirus from the same sanctuary, isolated from an animal with signs of acute flaccid paralysis.

8.
Nat Commun ; 11(1): 684, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019932

RESUMO

Mycobacterium tuberculosis (Mtb) strains are classified into different phylogenetic lineages (L), three of which (L2/L3/L4) emerged from a common progenitor after the loss of the MmpS6/MmpL6-encoding Mtb-specific deletion 1 region (TbD1). These TbD1-deleted "modern" lineages are responsible for globally-spread tuberculosis epidemics, whereas TbD1-intact "ancestral" lineages tend to be restricted to specific geographical areas, such as South India and South East Asia (L1) or East Africa (L7). By constructing and characterizing a panel of recombinant TbD1-knock-in and knock-out strains and comparison with clinical isolates, here we show that deletion of TbD1 confers to Mtb a significant increase in resistance to oxidative stress and hypoxia, which correlates with enhanced virulence in selected cellular, guinea pig and C3HeB/FeJ mouse infection models, the latter two mirroring in part the development of hypoxic granulomas in human disease progression. Our results suggest that loss of TbD1 at the origin of the L2/L3/L4 Mtb lineages was a key driver for their global epidemic spread and outstanding evolutionary success.


Assuntos
Evolução Molecular , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Animais , Cobaias , Humanos , Camundongos , Camundongos Endogâmicos C3H , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/patogenicidade , Filogenia , Deleção de Sequência , Virulência
9.
Sci Rep ; 9(1): 17409, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745243

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Sci Rep ; 9(1): 11331, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383878

RESUMO

The microbiota of the human gut is a complex and rich community where bacteria and their viruses, the bacteriophages, are dominant. There are few studies on the phage community and no clear standard for isolating them, sequencing and analysing their genomes. Since this makes comparisons between studies difficult, we aimed at defining an easy, low-cost, and reproducible methodology. We analysed five different techniques to isolate phages from human adult faeces and developed an approach to analyse their genomes in order to quantify contamination and classify phage contigs in terms of taxonomy and lifestyle. We chose the polyethylene glycol concentration method to isolate phages because of its simplicity, low cost, reproducibility, and of the high number and diversity of phage sequences that we obtained. We also tested the reproducibility of this method with multiple displacement amplification (MDA) and showed that MDA severely decreases the phage genetic diversity of the samples and the reproducibility of the method. Lastly, we studied the influence of sequencing depth on the analysis of phage diversity and observed the beginning of a plateau for phage contigs at 20,000,000 reads. This work contributes to the development of methods for the isolation of phages in faeces and for their comparative analysis.


Assuntos
Bacteriófagos/genética , Intestinos/virologia , Metagenoma/genética , Filogenia , Bacteriófagos/isolamento & purificação , Biologia Computacional , Análise Custo-Benefício , Fezes , Genoma Viral , Humanos , Metagenômica , Microbiota/genética
11.
Sci Rep ; 9(1): 11220, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375706

RESUMO

Clostridium tetani produces a potent neurotoxin, the tetanus neurotoxin (TeNT) that is responsible for the worldwide neurological disease tetanus, but which can be efficiently prevented by vaccination with tetanus toxoid. Until now only one type of TeNT has been characterized and very little information exists about the heterogeneity among C. tetani strains. We report here the genome sequences of 26 C. tetani strains, isolated between 1949 and 2017 and obtained from different locations. Genome analyses revealed that the C. tetani population is distributed in two phylogenetic clades, a major and a minor one, with no evidence for clade separation based on geographical origin or time of isolation. The chromosome of C. tetani is highly conserved; in contrast, the TeNT-encoding plasmid shows substantial heterogeneity. TeNT itself is highly conserved among all strains; the most relevant difference is an insertion of four amino acids in the C-terminal receptor-binding domain in four strains that might impact on receptor-binding properties. Other putative virulence factors, including tetanolysin and collagenase, are encoded in all genomes. This study highlights the population structure of C. tetani and suggests that tetanus-causing strains did not undergo extensive evolutionary diversification, as judged from the high conservation of its main virulence factors.


Assuntos
Clostridium tetani/genética , Genoma Bacteriano/genética , Clostridium tetani/patogenicidade , Colagenases/genética , Sequência Conservada , Neurotoxinas/genética , Filogenia , Especificidade da Espécie , Toxina Tetânica/genética , Fatores de Virulência/genética
12.
PLoS Pathog ; 15(6): e1007799, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31220188

RESUMO

The development of high-throughput genome sequencing enables accurate measurements of levels of sub-consensus intra-host virus genetic diversity and analysis of the role played by natural selection during cross-species transmission. We analysed the natural and experimental evolution of rabies virus (RABV), an important example of a virus that is able to make multiple host jumps. In particular, we (i) analyzed RABV evolution during experimental host switching with the goal of identifying possible genetic markers of host adaptation, (ii) compared the mutational changes observed during passage with those observed in natura, and (iii) determined whether the colonization of new hosts or tissues requires adaptive evolution in the virus. To address these aims, animal infection models (dog and fox) and primary cell culture models (embryo brain cells of dog and fox) were developed and viral variation was studied in detail through deep genome sequencing. Our analysis revealed a strong unidirectional host evolutionary effect, as dog-adapted rabies virus was able to replicate in fox and fox cells relatively easily, while dogs or neuronal dog cells were not easily susceptible to fox adapted-RABV. This suggests that dog RABV may be able to adapt to some hosts more easily than other host variants, or that when RABV switched from dogs to red foxes it lost its ability to adapt easily to other species. Although no difference in patterns of mutation variation between different host organs was observed, mutations were common following both in vitro and in vivo passage. However, only a small number of these mutations also appeared in natura, suggesting that adaptation during successful cross-species virus transmission is a complex, multifactorial evolutionary process.


Assuntos
Doenças do Cão , Evolução Molecular , Interações Hospedeiro-Parasita/imunologia , Vírus da Raiva/fisiologia , Raiva , Animais , Linhagem Celular , Doenças do Cão/genética , Doenças do Cão/imunologia , Cães , Feminino , Raposas/genética , Raposas/imunologia , Raposas/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Parasita/genética , Masculino , Mutação , Raiva/genética , Raiva/imunologia
14.
Nature ; 565(7738): 230-233, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602788

RESUMO

Yemen is currently experiencing, to our knowledge, the largest cholera epidemic in recent history. The first cases were declared in September 2016, and over 1.1 million cases and 2,300 deaths have since been reported1. Here we investigate the phylogenetic relationships, pathogenesis and determinants of antimicrobial resistance by sequencing the genomes of Vibrio cholerae isolates from the epidemic in Yemen and recent isolates from neighbouring regions. These 116 genomic sequences were placed within the phylogenetic context of a global collection of 1,087 isolates of the seventh pandemic V. cholerae serogroups O1 and O139 biotype El Tor2-4. We show that the isolates from Yemen that were collected during the two epidemiological waves of the epidemic1-the first between 28 September 2016 and 23 April 2017 (25,839 suspected cases) and the second beginning on 24 April 2017 (more than 1 million suspected cases)-are V. cholerae serotype Ogawa isolates from a single sublineage of the seventh pandemic V. cholerae O1 El Tor (7PET) lineage. Using genomic approaches, we link the epidemic in Yemen to global radiations of pandemic V. cholerae and show that this sublineage originated from South Asia and that it caused outbreaks in East Africa before appearing in Yemen. Furthermore, we show that the isolates from Yemen are susceptible to several antibiotics that are commonly used to treat cholera and to polymyxin B, resistance to which is used as a marker of the El Tor biotype.


Assuntos
Cólera/epidemiologia , Cólera/microbiologia , Genoma Bacteriano/genética , Genômica , Vibrio cholerae/genética , Vibrio cholerae/isolamento & purificação , Humanos , Filogenia , Vibrio cholerae/classificação , Iêmen/epidemiologia
15.
Gigascience ; 7(12)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30192951

RESUMO

Background: In addition to mapping quality information, the Genome coverage contains valuable biological information such as the presence of repetitive regions, deleted genes, or copy number variations (CNVs). It is essential to take into consideration atypical regions, trends (e.g., origin of replication), or known and unknown biases that influence coverage. It is also important that reported events have robust statistics (e.g. z-score) associated with their detections as well as precise location. Results: We provide a stand-alone application, sequana_coverage, that reports genomic regions of interest (ROIs) that are significantly over- or underrepresented in high-throughput sequencing data. Significance is associated with the events as well as characteristics such as length of the regions. The algorithm first detrends the data using an efficient running median algorithm. It then estimates the distribution of the normalized genome coverage with a Gaussian mixture model. Finally, a z-score statistic is assigned to each base position and used to separate the central distribution from the ROIs (i.e., under- and overcovered regions). A double thresholds mechanism is used to cluster the genomic ROIs. HTML reports provide a summary with interactive visual representations of the genomic ROIs with standard plots and metrics. Genomic variations such as single-nucleotide variants or CNVs can be effectively identified at the same time.


Assuntos
Algoritmos , Genoma , Bactérias/genética , Variações do Número de Cópias de DNA , Fungos/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Vírus/genética
17.
Genome Biol Evol ; 10(8): 1858-1874, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010947

RESUMO

Mycobacterium africanum consists of Lineages L5 and L6 of the Mycobacterium tuberculosis complex (MTBC) and causes human tuberculosis in specific regions of Western Africa, but is generally not transmitted in other parts of the world. Since M. africanum is evolutionarily closely placed between the globally dispersed Mycobacterium tuberculosis and animal-adapted MTBC-members, these lineages provide valuable insight into M. tuberculosis evolution. Here, we have collected 15 M. africanum L5 strains isolated in France over 4 decades. Illumina sequencing and phylogenomic analysis revealed a previously underappreciated diversity within L5, which consists of distinct sublineages. L5 strains caused relatively high levels of extrapulmonary tuberculosis and included multi- and extensively drug-resistant isolates, especially in the newly defined sublineage L5.2. The specific L5 sublineages also exhibit distinct phenotypic characteristics related to in vitro growth, protein secretion and in vivo immunogenicity. In particular, we identified a PE_PGRS and PPE-MPTR secretion defect specific for sublineage L5.2, which was independent of PPE38. Furthermore, L5 isolates were able to efficiently secrete and induce immune responses against ESX-1 substrates contrary to previous predictions. These phenotypes of Type VII protein secretion and immunogenicity provide valuable information to better link genome sequences to phenotypic traits and thereby understand the evolution of the MTBC.


Assuntos
Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Genômica , Mycobacterium/genética , Mycobacterium/imunologia , Filogenia , Adulto , Animais , Pareamento de Bases/genética , Biologia Computacional , Farmacorresistência Bacteriana/efeitos dos fármacos , Feminino , Marcadores Genéticos , Genótipo , Humanos , Isoniazida/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mycobacterium/efeitos dos fármacos , Mycobacterium/isolamento & purificação , Fenótipo , Deleção de Sequência/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
18.
Nucleic Acids Res ; 46(14): 6935-6949, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29982705

RESUMO

The advent of the genomic era has made elucidating gene function on a large scale a pressing challenge. ORFeome collections, whereby almost all ORFs of a given species are cloned and can be subsequently leveraged in multiple functional genomic approaches, represent valuable resources toward this endeavor. Here we provide novel, genome-scale tools for the study of Candida albicans, a commensal yeast that is also responsible for frequent superficial and disseminated infections in humans. We have generated an ORFeome collection composed of 5099 ORFs cloned in a Gateway™ donor vector, representing 83% of the currently annotated coding sequences of C. albicans. Sequencing data of the cloned ORFs are available in the CandidaOrfDB database at http://candidaorfeome.eu. We also engineered 49 expression vectors with a choice of promoters, tags and selection markers and demonstrated their applicability to the study of target ORFs transferred from the C. albicans ORFeome. In addition, the use of the ORFeome in the detection of protein-protein interaction was demonstrated. Mating-compatible strains as well as Gateway™-compatible two-hybrid vectors were engineered, validated and used in a proof of concept experiment. These unique and valuable resources should greatly facilitate future functional studies in C. albicans and the elucidation of mechanisms that underlie its pathogenicity.


Assuntos
Candida albicans/genética , Fases de Leitura Aberta , Candida albicans/patogenicidade , Bases de Dados de Ácidos Nucleicos , Vetores Genéticos , Genômica , Mapeamento de Interação de Proteínas
19.
Sci Rep ; 8(1): 9142, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29904088

RESUMO

All characterized members of the ubiquitous genus Acaryochloris share the unique property of containing large amounts of chlorophyll (Chl) d, a pigment exhibiting a red absorption maximum strongly shifted towards infrared compared to Chl a. Chl d is the major pigment in these organisms and is notably bound to antenna proteins structurally similar to those of Prochloron, Prochlorothrix and Prochlorococcus, the only three cyanobacteria known so far to contain mono- or divinyl-Chl a and b as major pigments and to lack phycobilisomes. Here, we describe RCC1774, a strain isolated from the foreshore near Roscoff (France). It is phylogenetically related to members of the Acaryochloris genus but completely lacks Chl d. Instead, it possesses monovinyl-Chl a and b at a b/a molar ratio of 0.16, similar to that in Prochloron and Prochlorothrix. It differs from the latter by the presence of phycocyanin and a vestigial allophycocyanin energetically coupled to photosystems. Genome sequencing confirmed the presence of phycobiliprotein and Chl b synthesis genes. Based on its phylogeny, ultrastructural characteristics and unique pigment suite, we describe RCC1774 as a novel species that we name Acaryochloris thomasi. Its very unusual pigment content compared to other Acaryochloris spp. is likely related to its specific lifestyle.


Assuntos
Clorofila A/metabolismo , Clorofila/metabolismo , Cianobactérias/classificação , Cianobactérias/metabolismo , Fitoplâncton/classificação , Fitoplâncton/metabolismo
20.
Nat Commun ; 9(1): 2253, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884848

RESUMO

Elucidating population structure and levels of genetic diversity and recombination is necessary to understand the evolution and adaptation of species. Candida albicans is the second most frequent agent of human fungal infections worldwide, causing high-mortality rates. Here we present the genomic sequences of 182 C. albicans isolates collected worldwide, including commensal isolates, as well as ones responsible for superficial and invasive infections, constituting the largest dataset to date for this major fungal pathogen. Although, C. albicans shows a predominantly clonal population structure, we find evidence of gene flow between previously known and newly identified genetic clusters, supporting the occurrence of (para)sexuality in nature. A highly clonal lineage, which experimentally shows reduced fitness, has undergone pseudogenization in genes required for virulence and morphogenesis, which may explain its niche restriction. Candida albicans thus takes advantage of both clonality and gene flow to diversify.


Assuntos
Candida albicans/genética , Fluxo Gênico , Genes Fúngicos/genética , Variação Genética , Candida albicans/classificação , Candida albicans/patogenicidade , Candidíase/microbiologia , Frequência do Gene , Humanos , Desequilíbrio de Ligação , Perda de Heterozigosidade , Filogenia , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie , Virulência/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA