Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(11): 19567-19577, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859089

RESUMO

Chalcogenide glass has achieved great success in manufacturing axial-type infrared gradient refractive index (IR-GRIN) lenses. However, studies on radial-type IR-GRIN lenses, which are more ideal for optical design, remain rare. The present study introduces what we believe to be a new method for preparing radial IR-GRIN lens by creating high refractive index (n) In2S3 nanocrystals within a 65GeS2-25In2S3-10CsCl (GIC, in molar percentage) glass matrix. Upon introduction of multi-temperature field manipulation, we have successfully achieved central crystallization and simultaneous gradient attenuation spreading toward the edge within GIC glass, providing a radial GRIN profile with Δn over 0.1 while maintaining excellent IR transparency. In addition, the optical and structural properties of the GIC GRIN samples were characterized. The relationship between Raman intensity and the n of glass ceramics at different heat treatment temperatures was investigated, thereby enabling the indirect confirmation of the presence of radial gradient crystallization within the prepared GIC GRIN samples through Raman intensity. Multiple experimental results have shown that this approach has excellent reproducibility and potential for large-scale productions.

2.
Materials (Basel) ; 16(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38068120

RESUMO

The first hyperpolarizability of graphene quantum dots (GQDs) suspended in water was determined using the hyper-Rayleigh scattering (HRS) technique. To the best of our knowledge, this is the first application of the HRS technique to characterize GQDs. Two commercial GQDs (Acqua-Cyan and Acqua-Green) with different compositions were studied. The HRS experiments were performed with an excitation laser at 1064 nm. The measured hyperpolarizabilities were (1.0±0.1)×10-27 esu and (0.9±0.1)×10-27 esu for Acqua-Cyan and Acqua-Green, respectively. The results were used to estimate the hyperpolarizability per nanosheet obtained by assuming that each GQD has five nanosheets with 0.3 nm thickness. The two-level model, used to calculate the static hyperpolarizability per nanosheet, provides values of (2.4±0.1)×10-28 esu (Acqua-Cyan) and (0.5±0.1)×10-28 esu (Aqua-Green). The origin of the nonlinearity is discussed on the basis of polarized resolved HRS experiments, and electric quadrupolar behavior with a strong dependence on surface effects. The nontoxic characteristics and order of magnitude indicate that these GQDs may be useful for biological microscopy imaging.

3.
Appl Opt ; 62(29): 7669-7677, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37855474

RESUMO

The single-beam Z-scan thermal lens technique is conducted to evaluate the fluorescence quantum yield of various solutions in the case of high-moderate absorption, considering both scenarios: solutions with substantial fluorescence and solutions with high thermal efficiency but low fluorescence. An analytical calculation is performed to determine the uncertainties associated with the random errors introduced by optical detectors. The results reveal that solutions with low fluorescence lead to a significant error, whereas higher fluorescence can help in decreasing the uncertainty. Additionally, the issue of random errors arising when multiple measurements are needed to accurately estimate the fluorescence of a solution will be discussed in different situations.

4.
Materials (Basel) ; 15(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35888474

RESUMO

The thermal lens effect is analyzed as a time-resolved Z-scan measurement using cw-single Gaussian beam configuration. The main characteristics of the measurement method are determined. We focus on the evaluation of the measurement error from statistical calculations to also check the linearity of the response and the way to extract the thermo-optical characteristics of absorbing liquids. The results are also applied to demonstrate the feasibility of absorption and scattering efficiencies determination on gold nanoparticles of 5 and 50 nm diameters.

5.
Materials (Basel) ; 14(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34639930

RESUMO

A general study of the diffracted far field due to thermal lens heating using Gaussian beams is presented. The numerical simulation considers the whole system, including both the optical and the thermal parameters. It is shown that the existing simplified relations found in the literature and used up to now only give the order of magnitude of the thermo-optical coefficients. More accurate, simplified formulas are derived to measure the induced thermal phase shift when working with Z-scan-based methods. Temperature estimation in absorbing media turn out to be more reliable whether using time-resolved or steady-state techniques. The extension of the calculation to the image formation in a 4f system is also addressed.

6.
Materials (Basel) ; 13(11)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512766

RESUMO

Zinc oxide nanoparticles were prepared from Zn5(CO3)2(OH)6 precursor, capped with poly(vinylpyrrolidone) (PVP), and annealed at 600 °C. The obtained powders were characterized by a powder X-ray diffraction (PXD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-visible spectroscopy (UV-vis), Raman spectroscopy, infrared spectroscopy (IR), thermal analysis (TGA/DTA), and third-order nonlinear (NL) optical measurement. Morphological evaluation by TEM and SEM measurements indicated that the precursor micro-particles are ball-shaped structures composed of plates with a thickness of approximately 10 nm. ZnO thin films, as well as ZnO/polymer multilayer layouts, were obtained by wet chemical methods (spin- and dip-coating). Surface topography and morphology of the obtained films were studied by SEM and AFM microscopy. Films with uniformly distributed ZnO plates, due to the erosion of primary micro-particles were formed. The fabricated specimens were also analyzed using a spectroscopic ellipsometry in order to calculate dielectric function and film thickness.

7.
Opt Lett ; 43(20): 5037, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30320812

RESUMO

This erratum corrects an error in Fig. 4 of Opt. Lett. 39, 5046 (2014).

8.
Rep Prog Phys ; 79(3): 036401, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26863100

RESUMO

Various techniques to characterize the nonlinear (NL) optical response of centro-symmetric materials are presented and evaluated with emphasis on the relationship between the macroscopic measurable quantities and the microscopic properties of photonic materials. NL refraction and NL absorption of the materials are the phenomena of major interest. The dependence of the NL refraction and NL absorption coefficients on the nature of the materials was studied as well as on the laser excitation characteristics of wavelength, intensity, spatial profile, pulse duration and pulses repetition rate. Selected experimental results are discussed and illustrated. The various techniques currently available were compared and their relative advantages and drawbacks were evaluated. Critical comparisons among established techniques provided elements to evaluate their accuracies and sensitivities with respect to novel methods that present improvements with respect to the conventional techniques.

9.
Opt Lett ; 39(17): 5046-9, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25166070

RESUMO

The nonlinear response of liquid water was investigated at 1064 and 532 nm using a Nd:YAG laser delivering pulses of 17 ps and its second harmonic. The experiments were performed using the D4σ method combined with the Z-scan technique. Nonlinear refractive indices of third- and fifth-order were determined, as well as the three-photon absorption coefficient, for both wavelengths. A good agreement was found between theory and experiment.

10.
Opt Lett ; 38(13): 2206-8, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23811878

RESUMO

We show that direct measurement of the beam radius in Z-scan experiments using a CCD camera at the output of a 4f-imaging system allows higher sensitivity and better accuracy than Baryscan. One of the advantages is to be insensitive to pointing instability of pulsed lasers because no hard (physical) aperture is employed as in the usual Z-scan. In addition, the numerical calculations involved here and the measurement of the beam radius are simplified since we do not measure the transmittance through an aperture and it is not subject to mathematical artifacts related to a normalization process, especially when the diffracted light intensity is very low.

11.
Phys Rev Lett ; 110(1): 013901, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23383790

RESUMO

The excitation of near-infrared (2+1)D solitons in liquid carbon disulfide is demonstrated due to the simultaneous contribution of the third- and fifth-order susceptibilities. Solitons propagating free from diffraction for more than 10 Rayleigh lengths although damped, were observed to support the proposed soliton behavior. Numerical calculations using a nonlinear Schrödinger-type equation were also performed.

12.
J Phys Chem B ; 117(1): 408-14, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23234368

RESUMO

Glasses in the ternary system (70 - x)NaPO(3)-30WO(3)-xBi(2)O(3), with x = 0-30 mol %, were prepared by the conventional melt-quenching technique. X-ray diffraction (XRD) measurements were performed to confirm the noncrystalline nature of the samples. The influence of the Bi(2)O(3) on the thermal, structural, and optical properties was investigated. Differential scanning calorimetry analysis showed that the glass transition temperature, T(g), increases from 405 to 440 °C for 0 ≤ x ≤ 15 mol % and decreases to 417 °C for x = 30 mol %. The thermal stability against devitrification decreases from 156 to 67 °C with the increase of the Bi(2)O(3) content. The structural modifications were studied by Raman scattering, showing a bismuth insertion into the phosphate chains by Bi-O-P linkage. Furthermore, up to 15 mol % of Bi(2)O(3) formation of BiO(6) clusters is observed, associated with Bi-O-Bi linkage, resulting in a progressive break of the linear phosphate chains that leads to orthophosphate Q(0) units. The linear refractive index, n(0), was measured using the prism-coupler technique at 532, 633, and 1550 nm, whereas the nonlinear (NL) refractive index, n(2) was measured at 1064 nm using the Z-scan technique. Values of 1.58 ≤ n(0) ≤ 1.88, n(2) ≥ 10(-15) cm(2)/W and NL absorption coefficient, α(2) ≤ 0.01 cm/GW, were determined. The linear and NL refractive indices increase with the increase of the Bi(2)O(3) concentration. The large values of n(0) and n(2), as well as the very small α(2), indicate that these materials have large potential for all-optical switching applications in the near-infrared.

13.
Appl Opt ; 48(21): 4124-9, 2009 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-19623226

RESUMO

We report experimental characterization of a very small rectangular phase shift (<0.3 rad) obtained from the far-field diffraction patterns using a closed aperture Z-scan technique. The numerical simulations as well as the experimental results reveal a peak-valley configuration in the far-field normalized transmittance, allowing us to determine the sign of the dephasing. The conditions necessary to obtain useful Z-scan traces are discussed. We provide simple linear expressions relating the measured signal to the phase shift. A very good agreement between calculated and experimental Z-scan profiles validates our approach. We show that a very well known nonlinear characterization technique can be extended for linear optical parameter estimation (as refractive index or thickness).

14.
Opt Lett ; 34(12): 1804-6, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19529709

RESUMO

Kerr spatial solitons are observed in slab chalcogenide waveguides at near-IR wavelengths. Waveguides are realized either by electron-beam evaporation or rf sputtering of a Ge-Sb-S compound deposited on oxidized silicon wafer. The Kerr coefficient of the thin film is evaluated to be 5 x 10(-18) m(2)/W from the experimentally required soliton power at 1.5 mum. Limitations due to material photosensitivity are revealed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA