Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38853979

RESUMO

We and others discovered a highly-conserved mitochondrial transmembrane microprotein, named Mitoregulin (Mtln), that supports lipid metabolism. We reported that Mtln strongly binds cardiolipin (CL), increases mitochondrial respiration and Ca 2+ retention capacities, and reduces reactive oxygen species (ROS). Here we extend our observation of Mtln-CL binding and examine Mtln influence on cristae structure and mitochondrial membrane integrity during stress. We demonstrate that mitochondria from constitutive- and inducible Mtln-knockout (KO) mice are susceptible to membrane freeze-damage and that this can be rescued by acute Mtln re-expression. In mitochondrial-simulated lipid monolayers, we show that synthetic Mtln decreases lipid packing and monolayer elasticity. Lipidomics revealed that Mtln-KO heart tissues show broad decreases in 22:6-containing lipids and increased cardiolipin damage/remodeling. Lastly, we demonstrate that Mtln-KO mice suffer worse myocardial ischemia-reperfusion injury, hinting at a translationally-relevant role for Mtln in cardioprotection. Our work supports a model in which Mtln binds cardiolipin and stabilizes mitochondrial membranes to broadly influence diverse mitochondrial functions, including lipid metabolism, while also protecting against stress.

2.
Cell Metab ; 36(5): 879-881, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38471509

RESUMO

Witmer et al. provide genomic and molecular evidence to demonstrate that Fndc5 (irisin myokine precursor protein) is translated in humans from an overlooked upstream ATG codon.


Assuntos
Códon de Iniciação , Fibronectinas , Humanos , Animais , Fibronectinas/metabolismo , Fibronectinas/genética , Camundongos , Códon de Iniciação/genética , Biossíntese de Proteínas , Miocinas
3.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405715

RESUMO

Background: Centrosomes localize to perinuclear foci where they serve multifunctional roles, arranging the microtubule organizing center (MTOC) and anchoring ubiquitin-proteasome system (UPS) machinery. In mature cardiomyocytes, centrosomal proteins redistribute into a specialized perinuclear cage-like structure, and a potential centrosome-UPS interface has not been studied. Taxilin-beta (Txlnb), a cardiomyocyte-enriched protein, belongs to a family of centrosome adapter proteins implicated in protein quality control. We hypothesize that Txlnb plays a key role in centrosomal-proteasomal crosstalk in cardiomyocytes. Methods: Integrative bioinformatics assessed centrosomal gene dysregulation in failing hearts. Txlnb gain/loss-of-function studies were conducted in cultured cardiomyocytes and mice. Txlnb's role in cardiac proteotoxicity and hypertrophy was examined using CryAB-R120G mice and transverse aortic constriction (TAC), respectively. Molecular modeling investigated Txlnb structure/function. Results: Human failing hearts show consistent dysregulation of many centrosome-associated genes, alongside UPS-related genes. Txlnb emerged as a candidate regulator of cardiomyocyte proteostasis that localizes to the perinuclear centrosomal compartment. Txlnb's interactome strongly supports its involvement in cytoskeletal, microtubule, and UPS processes, particularly centrosome-related functions. Overexpressing Txlnb in cardiomyocytes reduced ubiquitinated protein accumulation and enhanced proteasome activity during hypertrophy. Txlnb-knockout (KO) mouse hearts exhibit proteasomal insufficiency and altered cardiac growth, evidenced by ubiquitinated protein accumulation, decreased 26Sß5 proteasome activity, and lower mass with age. In Cryab-R120G mice, Txlnb loss worsened heart failure, causing lower ejection fractions. After TAC, Txlnb-KO mice also showed reduced ejection fraction, increased heart mass, and elevated ubiquitinated protein accumulation. Investigations into the molecular mechanisms revealed that Txlnb-KO did not affect proteasomal subunit expression but led to the upregulation of Txlna and several centrosomal proteins (Cep63, Ofd1, and Tubg) suggesting altered centrosomal dynamics. Structural predictions support Txlnb's role as a specialized centrosomal-adapter protein bridging centrosomes with proteasomes, confirmed by microtubule-dependent perinuclear localization. Conclusions: Together, these data provide initial evidence connecting Txlnb to cardiac proteostasis, hinting at the potential importance of functional bridging between specialized centrosomes and UPS in cardiomyocytes.

4.
Mol Ther Nucleic Acids ; 34: 102081, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38111915

RESUMO

MicroRNAs (miRNAs) control the expression of diverse subsets of target mRNAs, and studies have found miRNA dysregulation in failing hearts. Expression of miR-29 is abundant in heart, increases with aging, and is altered in cardiomyopathies. Prior studies demonstrate that miR-29 reduction via genetic knockout or pharmacologic blockade can blunt cardiac hypertrophy and fibrosis in mice. Surprisingly, this depended on specifically blunting miR-29 actions in cardiomyocytes versus fibroblasts. To begin developing more translationally relevant vectors, we generated a novel transgene-encoded miR-29 inhibitor (TuD-29) that can be incorporated into a viral-mediated gene therapy for cardioprotection. Here, we corroborate that miR-29 expression and activity is higher in cardiomyocytes versus fibroblasts and demonstrate that TuD-29 effectively blunts hypertrophic responses in cultured cardiomyocytes and mouse hearts. Furthermore, we found that adeno-associated virus (AAV)-mediated miR-29 overexpression in mouse hearts induces early diastolic dysfunction, whereas AAV:TuD-29 treatment improves cardiac output by increasing end-diastolic and stroke volumes. The integration of RNA sequencing and miRNA-target interactomes reveals that miR-29 regulates genes involved in calcium handling, cell stress and hypertrophy, metabolism, ion transport, and extracellular matrix remodeling. These investigations support a likely versatile role for miR-29 in influencing myocardial compliance and relaxation, potentially providing a unique therapeutic avenue to improve diastolic function in heart failure patients.

6.
Viruses ; 15(7)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37515125

RESUMO

Dengue virus (DENV) is a pathogenic arbovirus that causes human disease. The most severe stage of the disease (severe dengue) is characterized by vascular leakage, hypovolemic shock, and organ failure. Endothelial dysfunction underlies these phenomena, but the causal mechanisms of endothelial dysfunction are poorly characterized. This study investigated the role of c-ABL kinase in DENV-induced endothelial dysfunction. Silencing c-ABL with artificial miRNA or targeting its catalytic activity with imatinib revealed that c-ABL is required for the early steps of DENV infection. DENV-2 infection and conditioned media from DENV-infected cells increased endothelial expression of c-ABL and CRKII phosphorylation, promoted expression of mesenchymal markers, e.g., vimentin and N-cadherin, and decreased the levels of endothelial-specific proteins, e.g., VE-cadherin and ZO-1. These effects were reverted by silencing or inhibiting c-ABL. As part of the acquisition of a mesenchymal phenotype, DENV infection and treatment with conditioned media from DENV-infected cells increased endothelial cell motility in a c-ABL-dependent manner. In conclusion, DENV infection promotes a c-ABL-dependent endothelial phenotypic change that leads to the loss of intercellular junctions and acquisition of motility.


Assuntos
Vírus da Dengue , Dengue , Viroses , Humanos , Células Endoteliais , Vírus da Dengue/genética , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Viroses/metabolismo
7.
Mol Cell Biol ; 42(10): e0016322, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36125265

RESUMO

Insulin and insulin-like growth factor 1 (IGF1) signaling is transduced by insulin receptor substrate 1 (IRS1) and IRS2. To elucidate physiological and redundant roles of insulin and IGF1 signaling in adult hearts, we generated mice with inducible cardiomyocyte-specific deletion of insulin and IGF1 receptors or IRS1 and IRS2. Both models developed dilated cardiomyopathy, and most mice died by 8 weeks post-gene deletion. Heart failure was characterized by cardiomyocyte loss and disarray, increased proapoptotic signaling, and increased autophagy. Suppression of autophagy by activating mTOR signaling did not prevent heart failure. Transcriptional profiling revealed reduced serum response factor (SRF) transcriptional activity and decreased mRNA levels of genes encoding sarcomere and gap junction proteins as early as 3 days post-gene deletion, in concert with ultrastructural evidence of sarcomere disruption and intercalated discs within 1 week after gene deletion. These data confirm conserved roles for constitutive insulin and IGF1 signaling in suppressing autophagic and apoptotic signaling in the adult heart. The present study also identifies an unexpected role for insulin and IGF1 signaling in regulating an SRF-mediated transcriptional program, which maintains expression of genes encoding proteins that support sarcomere integrity in the adult heart, reduction of which results in rapid development of heart failure.


Assuntos
Insuficiência Cardíaca , Fator de Crescimento Insulin-Like I , Camundongos , Animais , Proteínas Substratos do Receptor de Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Insulina/metabolismo , Fator de Resposta Sérica/metabolismo , Sarcômeros/metabolismo , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo , Serina-Treonina Quinases TOR/metabolismo , RNA Mensageiro/metabolismo , Conexinas/metabolismo
8.
J Am Heart Assoc ; 11(13): e025687, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35730644

RESUMO

Background Sorbin and SH3 domain containing 2 (Sorbs2) protein is a cytoskeletal adaptor with an emerging role in cardiac biology and disease; yet, its potential relevance to adult-onset cardiomyopathies remains underexplored. Sorbs2 global knockout mice display lethal arrhythmogenic cardiomyopathy; however, the causative mechanisms remain unclear. Herein, we examine Sorbs2 dysregulation in heart failure, characterize novel Sorbs2 cardiomyocyte-specific knockout mice (Sorbs2-cKO), and explore associations between Sorbs2 genetic variations and human cardiovascular disease. Methods and Results Bioinformatic analyses show myocardial Sorbs2 mRNA is consistently upregulated in humans with adult-onset cardiomyopathies and in heart failure models. We generated Sorbs2-cKO mice and report that they develop progressive systolic dysfunction and enlarged cardiac chambers, and they die with congestive heart failure at about 1 year old. After 3 months, Sorbs2-cKO mice begin to show atrial enlargement and P-wave anomalies, without dysregulation of action potential-associated ion channel and gap junction protein expressions. After 6 months, Sorbs2-cKO mice exhibit impaired contractility in dobutamine-treated hearts and skinned myofibers, without dysregulation of contractile protein expressions. From our comprehensive survey of potential mechanisms, we found that within 4 months, Sorbs2-cKO hearts have defective microtubule polymerization and compensatory upregulation of structural cytoskeletal and adapter proteins, suggesting that this early intracellular structural remodeling is responsible for contractile dysfunction. Finally, we identified genetic variants that associate with decreased Sorbs2 expression and human cardiac phenotypes, including conduction abnormalities, atrial enlargement, and dilated cardiomyopathy, consistent with Sorbs2-cKO mice phenotypes. Conclusions Our studies show that Sorbs2 is essential for maintaining structural integrity in cardiomyocytes, likely through strengthening the interactions between microtubules and other cytoskeletal proteins at cross-link sites.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Animais , Modelos Animais de Doenças , Humanos , Lactente , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Proteínas de Ligação a RNA/genética , Domínios de Homologia de src
9.
Mol Ther Nucleic Acids ; 28: 1-15, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35280925

RESUMO

Parkinson's disease (PD) is caused by the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Although PD pathogenesis is not fully understood, studies implicate perturbations in gene regulation, mitochondrial function, and neuronal activity. MicroRNAs (miRs) are small gene regulatory RNAs that inhibit diverse subsets of target mRNAs, and several studies have noted miR expression alterations in PD brains. For example, miR-181a is abundant in the brain and is increased in PD patient brain samples; however, the disease relevance of this remains unclear. Here, we show that miR-181 target mRNAs are broadly downregulated in aging and PD brains. To address whether the miR-181 family plays a role in PD pathogenesis, we generated adeno-associated viruses (AAVs) to overexpress and inhibit the miR-181 isoforms. After co-injection with AAV overexpressing alpha-synuclein (aSyn) into mouse SN (PD model), we found that moderate miR-181a/b overexpression exacerbated aSyn-induced DA neuronal loss, whereas miR-181 inhibition was neuroprotective relative to controls (GFP alone and/or scrambled RNA). Also, prolonged miR-181 overexpression in SN alone elicited measurable neurotoxicity that is coincident with an increased immune response. mRNA-seq analyses revealed that miR-181a/b inhibits genes involved in synaptic transmission, neurite outgrowth, and mitochondrial respiration, along with several genes having known protective roles and genetic links in PD.

10.
Nat Commun ; 12(1): 7128, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880230

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is a potentially devastating myopathy caused by de-repression of the DUX4 gene in skeletal muscles. Effective therapies will likely involve DUX4 inhibition. RNA interference (RNAi) is one powerful approach to inhibit DUX4, and we previously described a RNAi gene therapy to achieve DUX4 silencing in FSHD cells and mice using engineered microRNAs. Here we report a strategy to direct RNAi against DUX4 using the natural microRNA miR-675, which is derived from the lncRNA H19. Human miR-675 inhibits DUX4 expression and associated outcomes in FSHD cell models. In addition, miR-675 delivery using gene therapy protects muscles from DUX4-associated death in mice. Finally, we show that three known miR-675-upregulating small molecules inhibit DUX4 and DUX4-activated FSHD biomarkers in FSHD patient-derived myotubes. To our knowledge, this is the first study demonstrating the use of small molecules to suppress a dominant disease gene using an RNAi mechanism.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , MicroRNAs/genética , MicroRNAs/farmacologia , Distrofia Muscular Facioescapuloumeral/tratamento farmacológico , Adulto , Idoso , Animais , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Feminino , Terapia Genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares , Distrofia Muscular Facioescapuloumeral/patologia , Fases de Leitura Aberta/efeitos dos fármacos , Interferência de RNA
11.
J Mol Cell Cardiol ; 141: 70-81, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32209328

RESUMO

RATIONALE: The cardiac sodium channel NaV1.5, encoded by SCN5A, produces the rapidly inactivating depolarizing current INa that is responsible for the initiation and propagation of the cardiac action potential. Acquired and inherited dysfunction of NaV1.5 results in either decreased peak INa or increased residual late INa (INa,L), leading to tachy/bradyarrhythmias and sudden cardiac death. Previous studies have shown that increased cellular NAD+ and NAD+/NADH ratio increase INa through suppression of mitochondrial reactive oxygen species and PKC-mediated NaV1.5 phosphorylation. In addition, NAD+-dependent deacetylation of NaV1.5 at K1479 by Sirtuin 1 increases NaV1.5 membrane trafficking and INa. The role of NAD+ precursors in modulating INa remains unknown. OBJECTIVE: To determine whether and by which mechanisms the NAD+ precursors nicotinamide riboside (NR) and nicotinamide (NAM) affect peak INa and INa,Lin vitro and cardiac electrophysiology in vivo. METHODS AND RESULTS: The effects of NAD+ precursors on the NAD+ metabolome and electrophysiology were studied using HEK293 cells expressing wild-type and mutant NaV1.5, rat neonatal cardiomyocytes (RNCMs), and mice. NR increased INa in HEK293 cells expressing NaV1.5 (500 µM: 51 ± 18%, p = .02, 5 mM: 59 ± 22%, p = .03) and RNCMs (500 µM: 60 ± 26%, p = .02, 5 mM: 74 ± 39%, p = .03) while reducing INa,L at the higher concentration (RNCMs, 5 mM: -45 ± 11%, p = .04). NR (5 mM) decreased NaV1.5 K1479 acetylation but increased INa in HEK293 cells expressing a mutant form of NaV1.5 with disruption of the acetylation site (NaV1.5-K1479A). Disruption of the PKC phosphorylation site abolished the effect of NR on INa. Furthermore, NAM (5 mM) had no effect on INa in RNCMs or in HEK293 cells expressing wild-type NaV1.5, but increased INa in HEK293 cells expressing NaV1.5-K1479A. Dietary supplementation with NR for 10-12 weeks decreased QTc in C57BL/6 J mice (0.35% NR: -4.9 ± 2.0%, p = .14; 1.0% NR: -9.5 ± 2.8%, p = .01). CONCLUSIONS: NAD+ precursors differentially regulate NaV1.5 via multiple mechanisms. NR increases INa, decreases INa,L, and warrants further investigation as a potential therapy for arrhythmic disorders caused by NaV1.5 deficiency and/or dysfunction.


Assuntos
Ativação do Canal Iônico , Miocárdio/metabolismo , NAD/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Acetilação/efeitos dos fármacos , Animais , Suplementos Nutricionais , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Lisina/metabolismo , Metaboloma , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Niacinamida/análogos & derivados , Niacinamida/química , Niacinamida/farmacologia , Fosforilação/efeitos dos fármacos , Compostos de Piridínio/química , Compostos de Piridínio/farmacologia , Ratos Sprague-Dawley
13.
JACC Basic Transl Sci ; 3(4): 503-517, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30175274

RESUMO

Heart failure remains a major cause of morbidity and mortality in developed countries. There is still a strong need to devise new mechanism-based treatments for heart failure. Numerous studies have suggested the importance of the Ca2+-dependent protease calpain in cardiac physiology and pathology. However, no drugs are currently under development or testing in human patients to target calpain for heart failure treatment. Herein the data demonstrate that inhibition of calpain activity protects against deleterious ultrastructural remodeling and cardiac dysfunction in multiple rodent models of heart failure, providing compelling evidence that calpain inhibition is a promising therapeutic strategy for heart failure treatment.

14.
Cell Rep ; 23(13): 3710-3720.e8, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949756

RESUMO

Mitochondria are composed of many small proteins that control protein synthesis, complex assembly, metabolism, and ion and reactive oxygen species (ROS) handling. We show that a skeletal muscle- and heart-enriched long non-coding RNA, LINC00116, encodes a highly conserved 56-amino-acid microprotein that we named mitoregulin (Mtln). Mtln localizes to the inner mitochondrial membrane, where it binds cardiolipin and influences protein complex assembly. In cultured cells, Mtln overexpression increases mitochondrial membrane potential, respiration rates, and Ca2+ retention capacity while decreasing mitochondrial ROS and matrix-free Ca2+. Mtln-knockout mice display perturbations in mitochondrial respiratory (super)complex formation and activity, fatty acid oxidation, tricarboxylic acid (TCA) cycle enzymes, and Ca2+ retention capacity. Blue-native gel electrophoresis revealed that Mtln co-migrates alongside several complexes, including the complex I assembly module, complex V, and supercomplexes. Under denaturing conditions, Mtln remains in high-molecular-weight complexes, supporting its role as a sticky molecular tether that enhances respiratory efficiency by bolstering protein complex assembly and/or stability.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , RNA Longo não Codificante/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Cardiolipinas/química , Cardiolipinas/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Oxirredução , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Alinhamento de Sequência
15.
J Clin Invest ; 128(3): 1154-1163, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29457789

RESUMO

SCN5A encodes the voltage-gated Na+ channel NaV1.5 that is responsible for depolarization of the cardiac action potential and rapid intercellular conduction. Mutations disrupting the SCN5A coding sequence cause inherited arrhythmias and cardiomyopathy, and single-nucleotide polymorphisms (SNPs) linked to SCN5A splicing, localization, and function associate with heart failure-related sudden cardiac death. However, the clinical relevance of SNPs that modulate SCN5A expression levels remains understudied. We recently generated a transcriptome-wide map of microRNA (miR) binding sites in human heart, evaluated their overlap with common SNPs, and identified a synonymous SNP (rs1805126) adjacent to a miR-24 site within the SCN5A coding sequence. This SNP was previously shown to reproducibly associate with cardiac electrophysiological parameters, but was not considered to be causal. Here, we show that miR-24 potently suppresses SCN5A expression and that rs1805126 modulates this regulation. We found that the rs1805126 minor allele associates with decreased cardiac SCN5A expression and that heart failure subjects homozygous for the minor allele have decreased ejection fraction and increased mortality, but not increased ventricular tachyarrhythmias. In mice, we identified a potential basis for this in discovering that decreased Scn5a expression leads to accumulation of myocardial reactive oxygen species. Together, these data reiterate the importance of considering the mechanistic significance of synonymous SNPs as they relate to miRs and disease, and highlight a surprising link between SCN5A expression and nonarrhythmic death in heart failure.


Assuntos
Insuficiência Cardíaca/genética , MicroRNAs/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Potenciais de Ação , Idoso , Alelos , Animais , Sítios de Ligação , Morte Súbita Cardíaca , Feminino , Perfilação da Expressão Gênica , Genótipo , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Homozigoto , Humanos , Desequilíbrio de Ligação , Masculino , Camundongos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Patch-Clamp , Polimorfismo de Nucleotídeo Único , Ratos Sprague-Dawley
17.
Circ Heart Fail ; 10(6)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28611128

RESUMO

BACKGROUND: KCNE2 is a promiscuous auxiliary subunit of voltage-gated cation channels. A recent work demonstrated that KCNE2 regulates L-type Ca2+ channels. Given the important roles of altered Ca2+ signaling in structural and functional remodeling in diseased hearts, this study investigated whether KCNE2 participates in the development of pathological hypertrophy. METHODS AND RESULTS: We found that cardiac KCNE2 expression was significantly decreased in phenylephrine-induced cardiomyocyte hypertrophy in neonatal rat ventricular myocytes and in transverse aortic constriction-induced cardiac hypertrophy in mice, as well as in dilated cardiomyopathy in human. Knockdown of KCNE2 in neonatal rat ventricular myocytes reproduced hypertrophy by increasing the expression of ANP (atrial natriuretic peptide) and ß-MHC (ß-myosin heavy chain), and cell surface area, whereas overexpression of KCNE2 attenuated phenylephrine-induced cardiomyocyte hypertrophy. Knockdown of KCNE2 increased intracellular Ca2+ transient, calcineurin activity, and nuclear NFAT (nuclear factor of activated T cells) protein levels, and pretreatment with inhibitor of L-type Ca2+ channel (nifedipine) or calcineurin (FK506) attenuated the activation of calcineurin-NFAT pathway and cardiomyocyte hypertrophy. Meanwhile, the phosphorylation levels of p38, extracellular signal-regulated kinase 1/2, and c-Jun N-terminal kinase were increased, and inhibiting the 3 cascades of mitogen-activated protein kinase reduced cardiomyocyte hypertrophy induced by KCNE2 knockdown. Overexpression of KCNE2 in heart by ultrasound-microbubble-mediated gene transfer suppressed the development of hypertrophy and activation of calcineurin-NFAT and mitogen-activated protein kinase pathways in transverse aortic constriction mice. CONCLUSIONS: This study demonstrates that cardiac KCNE2 expression is decreased and contributes to the development of hypertrophy via activation of calcineurin-NFAT and mitogen-activated protein kinase pathways. Targeting KCNE2 is a potential therapeutic strategy for the treatment of hypertrophy.


Assuntos
Calcineurina/genética , Cardiomegalia/genética , Regulação da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fatores de Transcrição NFATC/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , RNA/genética , Animais , Animais Recém-Nascidos , Apoptose , Calcineurina/metabolismo , Cardiomegalia/metabolismo , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Miocárdio/metabolismo , Miocárdio/patologia , Fatores de Transcrição NFATC/metabolismo , Reação em Cadeia da Polimerase , Canais de Potássio de Abertura Dependente da Tensão da Membrana/biossíntese , Ratos , Ratos Sprague-Dawley
18.
Nat Med ; 23(3): 361-367, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28191886

RESUMO

The voltage-gated cardiac Na+ channel (Nav1.5), encoded by the SCN5A gene, conducts the inward depolarizing cardiac Na+ current (INa) and is vital for normal cardiac electrical activity. Inherited loss-of-function mutations in SCN5A lead to defects in the generation and conduction of the cardiac electrical impulse and are associated with various arrhythmia phenotypes. Here we show that sirtuin 1 deacetylase (Sirt1) deacetylates Nav1.5 at lysine 1479 (K1479) and stimulates INa via lysine-deacetylation-mediated trafficking of Nav1.5 to the plasma membrane. Cardiac Sirt1 deficiency in mice induces hyperacetylation of K1479 in Nav1.5, decreases expression of Nav1.5 on the cardiomyocyte membrane, reduces INa and leads to cardiac conduction abnormalities and premature death owing to arrhythmia. The arrhythmic phenotype of cardiac-Sirt1-deficient mice recapitulated human cardiac arrhythmias resulting from loss of function of Nav1.5. Increased Sirt1 activity or expression results in decreased lysine acetylation of Nav1.5, which promotes the trafficking of Nav1.5 to the plasma membrane and stimulation of INa. As compared to wild-type Nav1.5, Nav1.5 with K1479 mutated to a nonacetylatable residue increases peak INa and is not regulated by Sirt1, whereas Nav1.5 with K1479 mutated to mimic acetylation decreases INa. Nav1.5 is hyperacetylated on K1479 in the hearts of patients with cardiomyopathy and clinical conduction disease. Thus, Sirt1, by deacetylating Nav1.5, plays an essential part in the regulation of INa and cardiac electrical activity.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/genética , Cardiomiopatias/metabolismo , Potenciais da Membrana , Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Sirtuína 1/genética , Acetilação , Animais , Ecocardiografia , Eletrocardiografia , Células HEK293 , Coração/diagnóstico por imagem , Coração/fisiopatologia , Humanos , Immunoblotting , Imunoprecipitação , Espectrometria de Massas , Camundongos , Camundongos Knockout , Miócitos Cardíacos , Técnicas de Patch-Clamp , Ratos , Sirtuína 1/metabolismo
19.
Front Neurol ; 8: 13, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197125

RESUMO

α-Synuclein is postulated to play a key role in the pathogenesis of Parkinson's disease (PD). Aggregates of α-synuclein contribute to neurodegeneration and cell death in humans and in mouse models of PD. Here, we use virally mediated RNA interference to knockdown human α-synuclein in mice. We used an siRNA design algorithm to identify eight siRNA sequences with minimal off-targeting potential. One RNA-interference sequence (miSyn4) showed maximal protein knockdown potential in vitro. We then designed AAV vectors expressing miSyn4 and injected them into the mouse substantia nigra. miSyn4 was robustly expressed and did not detectably change dopamine neurons, glial proliferation, or mouse behavior. We then injected AAV2-miSyn4 into Thy1-hSNCA mice over expressing α-synuclein and found decreased human α-synuclein (hSNCA) in both midbrain and cortex. In separate mice, co-injection of AAV2-hSNCA and AAV2-miSyn4 demonstrated decreased hSNCA expression and rescue of hSNCA-mediated behavioral deficits. These data suggest that virally mediated RNA interference can knockdown hSNCA in vivo, which could be helpful for future therapies targeting human α-synuclein.

20.
Nucleic Acids Res ; 44(15): 7120-31, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27418678

RESUMO

MicroRNAs (miRs) have emerged as key biological effectors in human health and disease. These small noncoding RNAs are incorporated into Argonaute (Ago) proteins, where they direct post-transcriptional gene silencing via base-pairing with target transcripts. Although miRs have become intriguing biological entities and attractive therapeutic targets, the translational impacts of miR research remain limited by a paucity of empirical miR targeting data, particularly in human primary tissues. Here, to improve our understanding of the diverse roles miRs play in cardiovascular function and disease, we applied high-throughput methods to globally profile miR:target interactions in human heart tissues. We deciphered Ago2:RNA interactions using crosslinking immunoprecipitation coupled with high-throughput sequencing (HITS-CLIP) to generate the first transcriptome-wide map of miR targeting events in human myocardium, detecting 4000 cardiac Ago2 binding sites across >2200 target transcripts. Our initial exploration of this interactome revealed an abundance of miR target sites in gene coding regions, including several sites pointing to new miR-29 functions in regulating cardiomyocyte calcium, growth and metabolism. Also, we uncovered several clinically-relevant interactions involving common genetic variants that alter miR targeting events in cardiomyopathy-associated genes. Overall, these data provide a critical resource for bolstering translational miR research in heart, and likely beyond.


Assuntos
Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Reagentes de Ligações Cruzadas , Imunoprecipitação , MicroRNAs/metabolismo , Miocárdio/metabolismo , Transcriptoma/genética , Regiões 3' não Traduzidas/genética , Sítios de Ligação , Cálcio/metabolismo , Cardiomiopatias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Miocárdio/citologia , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA