Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(8): 112985, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37590135

RESUMO

The balance of contralateral and ipsilateral retinogeniculate projections is critical for binocular vision, but the transcriptional programs regulating this process remain ill defined. Here we show that the Pou class homeobox protein POU3F1 is expressed in nascent mouse contralateral retinal ganglion cells (cRGCs) but not ipsilateral RGCs (iRGCs). Upon Pou3f1 inactivation, the proportion of cRGCs is reduced in favor of iRGCs, leading to abnormal projection ratios at the optic chiasm. Conversely, misexpression of Pou3f1 in progenitors increases the production of cRGCs. Using CUT&RUN and RNA sequencing in gain- and loss-of-function assays, we demonstrate that POU3F1 regulates expression of several key members of the cRGC gene regulatory network. Finally, we report that POU3F1 is sufficient to induce RGC-like cell production, even in late-stage retinal progenitors of Atoh7 knockout mice. This work uncovers POU3F1 as a regulator of the cRGC transcriptional program, opening possibilities for optic nerve regenerative therapies.

2.
Proc Natl Acad Sci U S A ; 120(19): e2122168120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126716

RESUMO

Temporal identity factors are sufficient to reprogram developmental competence of neural progenitors and shift cell fate output, but whether they can also reprogram the identity of terminally differentiated cells is unknown. To address this question, we designed a conditional gene expression system that allows rapid screening of potential reprogramming factors in mouse retinal glial cells combined with genetic lineage tracing. Using this assay, we found that coexpression of the early temporal identity transcription factors Ikzf1 and Ikzf4 is sufficient to directly convert Müller glial (MG) cells into cells that translocate to the outer nuclear layer (ONL), where photoreceptor cells normally reside. We name these "induced ONL (iONL)" cells. Using genetic lineage tracing, histological, immunohistochemical, and single-cell transcriptome and multiome analyses, we show that expression of Ikzf1/4 in MG in vivo, without retinal injury, mostly generates iONL cells that share molecular characteristics with bipolar cells, although a fraction of them stain for Rxrg, a cone photoreceptor marker. Furthermore, we show that coexpression of Ikzf1 and Ikzf4 can reprogram mouse embryonic fibroblasts to induced neurons in culture by rapidly remodeling chromatin and activating a neuronal gene expression program. This work uncovers general neuronal reprogramming properties for temporal identity factors in terminally differentiated cells.


Assuntos
Fibroblastos , Retina , Animais , Camundongos , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Fatores de Transcrição/metabolismo , Diferenciação Celular/fisiologia , Reprogramação Celular
3.
Curr Biol ; 31(21): R1434-R1437, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34752770

RESUMO

Cell reprogramming is generally considered an artificially induced event. Excitingly, a new study shows that post-mitotic cell reprogramming occurs naturally in the developing fish retina, uncovering a mechanism involved in the generation of cell diversity.


Assuntos
Reprogramação Celular , Retina , Animais
4.
Stem Cell Reports ; 11(1): 183-196, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29937144

RESUMO

Heterozygous loss-of-function mutations in GRIN2B, a subunit of the NMDA receptor, cause intellectual disability and language impairment. We developed clonal models of GRIN2B deletion and loss-of-function mutations in a region coding for the glutamate binding domain in human cells and generated neurons from a patient harboring a missense mutation in the same domain. Transcriptome analysis revealed extensive increases in genes associated with cell proliferation and decreases in genes associated with neuron differentiation, a result supported by extensive protein analyses. Using electrophysiology and calcium imaging, we demonstrate that NMDA receptors are present on neural progenitor cells and that human mutations in GRIN2B can impair calcium influx and membrane depolarization even in a presumed undifferentiated cell state, highlighting an important role for non-synaptic NMDA receptors. It may be this function, in part, which underlies the neurological disease observed in patients with GRIN2B mutations.


Assuntos
Diferenciação Celular , Mutação , Neurônios/citologia , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Biomarcadores , Diferenciação Celular/genética , Análise Mutacional de DNA , Reparo do DNA , Dosagem de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação com Perda de Função , Modelos Moleculares , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Conformação Proteica , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Dev Dyn ; 247(1): 10-17, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28643368

RESUMO

Recent studies reported the transfer of fluorescent labels between grafted and host cells after transplantation of photoreceptor precursor cells in the mouse retina. While clearly impacting the interpretation of transplantation studies in the retina, the potential impact of material transfer in other experimental paradigms using cell-specific labels remains uncertain. Here, we briefly review the evidence supporting material transfer in transplantation studies and discuss whether it might influence retinal cell lineage tracing experiments in developmental and regeneration studies. We also propose ways to control for the possible confounding occurrence of label exchange in such experiments. Developmental Dynamics 247:10-17, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Neurônios/citologia , Retina/citologia , Animais , Camundongos
6.
Development ; 143(4): 575-81, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26755700

RESUMO

Cell division orientation is crucial to control segregation of polarized fate determinants in the daughter cells to produce symmetric or asymmetric fate outcomes. Most studies in vertebrates have focused on the role of mitotic spindle orientation in proliferative asymmetric divisions and it remains unclear whether altering spindle orientation is required for the production of asymmetric fates in differentiative terminal divisions. Here, we show that the GoLoco motif protein LGN, which interacts with Gαi to control apicobasal division orientation in Drosophila neuroblasts, is excluded from the apical domain of retinal progenitors undergoing planar divisions, but not in those undergoing apicobasal divisions. Inactivation of LGN reduces the number of apicobasal divisions in mouse retinal progenitors, whereas it conversely increases these divisions in cortical progenitors. Although LGN inactivation increases the number of progenitors outside the ventricular zone in the developing neocortex, it has no effect on the position or number of progenitors in the retina. Retinal progenitor cell lineage analysis in LGN mutant mice, however, shows an increase in symmetric terminal divisions producing two photoreceptors, at the expense of asymmetric terminal divisions producing a photoreceptor and a bipolar or amacrine cell. Similarly, inactivating Gαi decreases asymmetric terminal divisions, suggesting that LGN function with Gαi to control division orientation in retinal progenitors. Together, these results show a context-dependent function for LGN and indicate that apicobasal divisions are not involved in proliferative asymmetric divisions in the mouse retina, but are instead essential to generate binary fates at terminal divisions.


Assuntos
Divisão Celular Assimétrica , Proteínas de Transporte/metabolismo , Neocórtex/citologia , Retina/citologia , Animais , Células COS , Proteínas de Ciclo Celular , Proliferação de Células , Chlorocebus aethiops , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Camundongos , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA