RESUMO
Nephropathic cystinosis is a rare autosomal recessive storage disorder caused by CTNS gene mutations, leading to autophagy-lysosomal pathway impairment and cystine crystals accumulation. Neurologic involvement is highly variable and includes both neurodevelopmental and neurodegenerative disturbances, as well as focal neurologic deficits. By presenting longitudinal data of a 28-year-old patient with a large infratentorial lesion, we summarized the pathology, clinical and imaging features of neurological involvement in cystinosis patients. Brain damage in form of cystinosis-related cerebral lesions occurs in advanced disease phases and is characterized by the accumulation of cystine crystals, subsequent inflammation with vasculitis-like features, necrosis, and calcification. Epilepsy is a frequent comorbidity in affected individuals. Steroids might play a role in the symptomatic treatment of "stroke-like" episodes due to edematous-inflammatory lesions, but probably do not change the overall prognosis. Lifelong compliance to depleting therapy with cysteamine still represents the main therapeutic option. However, consequences of CTNS gene defects are not restricted to cystine accumulation. New evidence of four-repeat (4R-) Tau immunoreactivity suggests concurrent progressive neurodegeneration in cystinosis patients, highlighting the need of innovative therapeutic strategies, and shedding light on the crosstalk between proteinopathies and autophagy-lysosomal system defects. Eventually, emerging easily accessible biomarkers such as serum neurofilament light chains (NfL) might detect subclinical neurologic involvement in cystinosis patients.
Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Cistinose , Humanos , Adulto , Cistinose/complicações , Cistinose/genética , Cistinose/tratamento farmacológico , Cistina/metabolismo , Cistina/uso terapêutico , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/uso terapêutico , Cisteamina/uso terapêutico , Inflamação/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismoRESUMO
During metastasis, cancer cells that originate from the primary tumor circulate in the bloodstream, extravasate, and form micrometastases at distant locations. Several lines of evidence suggest that specific interactions between cancer cells and endothelial cells, in particular tumor cell adhesion to the endothelium and transendothelial migration, play a crucial role in extravasation. Here we have studied the role of vascular endothelial (VE)-cadherin which is expressed aberrantly by breast cancer cells and might promote such interactions. By comparing different human breast cancer cell lines, we observed that the number of cancer cells that adhered to endothelium correlated with VE-cadherin expression levels. VE-cadherin silencing experiments confirmed that VE-cadherin enhances cancer cell adhesion to endothelial cells. However, in contrast, the number of cancer cells that incorporated into the endothelium was not dependent on VE-cadherin. Thus, it appears that cancer cell adhesion and incorporation are distinct processes that are governed by different molecular mechanisms. When cancer cells incorporated into the endothelial monolayer, they formed VE-cadherin positive contacts with endothelial cells. On the other hand, we also observed tumor cells that had displaced endothelial cells, reflecting either different modes of incorporation, or a temporal sequence where cancer cells first form contact with endothelial cells and then displace them to facilitate transmigration. Taken together, these results show that VE-cadherin promotes the adhesion of breast cancer cells to the endothelium and is involved in the initial phase of incorporation, but not their transmigration. Thus, VE-cadherin might be of relevance for therapeutic strategies aiming at preventing the metastatic spread of breast cancer cells.