Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(39): e2405546121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39298488

RESUMO

Fluctuating environments that consist of regular cycles of co-occurring stress are a common challenge faced by cellular populations. For a population to thrive in constantly changing conditions, an ability to coordinate a rapid cellular response is essential. Here, we identify a mutation conferring an arginine-to-histidine (Arg to His) substitution in the transcription terminator Rho. The rho R109H mutation frequently arose in Escherichia coli populations experimentally evolved under repeated long-term starvation conditions, during which the accumulation of metabolic waste followed by transfer into fresh media results in drastic environmental pH fluctuations associated with feast and famine. Metagenomic sequencing revealed that populations containing the rho mutation also possess putative loss-of-function mutations in ydcI, which encodes a recently characterized transcription factor associated with pH homeostasis. Genetic reconstructions of these mutations show that the rho allele confers plasticity via an alkaline-induced reduction of Rho function that, when found in tandem with a ΔydcI allele, leads to intracellular alkalization and genetic assimilation of Rho mutant function. We further identify Arg to His substitutions at analogous sites in rho alleles from species that regularly experience neutral to alkaline pH fluctuations in their environments. Our results suggest that Arg to His substitutions in Rho may serve to rapidly coordinate complex physiological responses through pH sensing and shed light on how cellular populations use environmental cues to coordinate rapid responses to complex, fluctuating environments.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Adaptação Fisiológica/genética , Mutação , Terminação da Transcrição Genética , Regulação Bacteriana da Expressão Gênica , Fator Rho/metabolismo , Fator Rho/genética , Evolução Molecular
2.
Mol Cell ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39178862

RESUMO

Binding of the bacterial Rho helicase to nascent transcripts triggers Rho-dependent transcription termination (RDTT) in response to cellular signals that modulate mRNA structure and accessibility of Rho utilization (Rut) sites. Despite the impact of temperature on RNA structure, RDTT was never linked to the bacterial response to temperature shifts. We show that Rho is a central player in the cold-shock response (CSR), challenging the current view that CSR is primarily a posttranscriptional program. We identify Rut sites in 5'-untranslated regions of key CSR genes/operons (cspA, cspB, cspG, and nsrR-rnr-yjfHI) that trigger premature RDTT at 37°C but not at 15°C. High concentrations of RNA chaperone CspA or nucleotide changes in the cspA mRNA leader reduce RDTT efficiency, revealing how RNA restructuring directs Rho to activate CSR genes during the cold shock and to silence them during cold acclimation. These findings establish a paradigm for how RNA thermosensors can modulate gene expression.

3.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464051

RESUMO

Fluctuating environments that consist of regular cycles of co-occurring stress are a common challenge faced by cellular populations. For a population to thrive in constantly changing conditions, an ability to coordinate a rapid cellular response is essential. Here, we identify a mutation conferring an arginine-to-histidine (Arg to His) substitution in the transcription terminator Rho. The rho R109H mutation frequently arose in E. coli populations experimentally evolved under repeated long-term starvation conditions, during which feast and famine result in drastic environmental pH fluctuations. Metagenomic sequencing revealed that populations containing the rho mutation also possess putative loss-of-function mutations in ydcI, which encodes a recently characterized transcription factor associated with pH homeostasis. Genetic reconstructions of these mutations show that the rho allele confers a plastic alkaline-induced reduction of Rho function that, when found in tandem with a ΔydcI allele, leads to intracellular alkalinization and genetic assimilation of Rho mutant function. We further identify Arg to His substitutions at analogous sites in rho alleles from species originating from fluctuating alkaline environments. Our results suggest that Arg to His substitutions in global regulators of gene expression can serve to rapidly coordinate complex responses through pH sensing and shed light on how cellular populations across the tree of life use environmental cues to coordinate rapid responses to complex, fluctuating environments.

4.
Proc Natl Acad Sci U S A ; 119(38): e2209608119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095194

RESUMO

Helicases are ubiquitous motor enzymes that remodel nucleic acids (NA) and NA-protein complexes in key cellular processes. To explore the functional repertoire and specificity landscape of helicases, we devised a screening scheme-Helicase-SELEX (Systematic Evolution of Ligands by EXponential enrichment)-that enzymatically probes substrate and cofactor requirements at global scale. Using the transcription termination Rho helicase of Escherichia coli as a prototype for Helicase-SELEX, we generated a genome-wide map of Rho utilization (Rut) sites. The map reveals many features, including promoter- and intrinsic terminator-associated Rut sites, bidirectional Rut tandems, and cofactor-dependent Rut sites with inverted G > C skewed compositions. We also implemented an H-SELEX variant where we used a model ligand, serotonin, to evolve synthetic Rut sites operating in vitro and in vivo in a ligand-dependent manner. Altogether, our data illustrate the power and flexibility of Helicase-SELEX to seek constitutive or conditional helicase substrates in natural or synthetic NA libraries for fundamental or synthetic biology discovery.


Assuntos
DNA Helicases , Riboswitch , Técnica de Seleção de Aptâmeros , Terminação da Transcrição Genética , Sítios de Ligação , DNA Helicases/química , Escherichia coli/enzimologia , Ligantes , Especificidade por Substrato
5.
mBio ; 13(4): e0091222, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862763

RESUMO

Copper is essential to most living beings but also highly toxic and as such is an important player at the host-pathogen interface. Bacteria have thus developed homeostatic mechanisms to tightly control its intracellular concentration. Known Cu export and import systems are under transcriptional control, whereas posttranscriptional regulatory mechanisms are yet to be characterized. We identified a three-gene operon, bp2923-bfrG-bp2921, downregulated by copper and notably encoding a TonB-dependent transporter in Bordetella pertussis. We show here that the protein encoded by the first gene, which is a member of the DUF2946 protein family, represents a new type of upstream Open Reading Frame (uORF) involved in posttranscriptional regulation of the downstream genes. In the absence of copper, the entire operon is transcribed and translated. Perception of copper by the nascent bp2923-coded protein via its conserved CXXC motif triggers Rho-dependent transcription termination between the first and second genes by relieving translation arrest on a conserved C-terminal RAPP motif. Homologs of bp2923 are widespread in bacterial genomes, where they head operons predicted to participate in copper homeostasis. This work has thus unveiled a new mode of genetic regulation by a transition metal and identified a regulatory function for a member of an uncharacterized family of bacterial proteins that we have named CruR, for copper-responsive upstream regulator. IMPORTANCE Copper is a transition metal necessary for living beings but also extremely toxic. Bacteria thus tightly control its homeostasis with transcriptional regulators. In this work, we have identified in the whooping cough agent Bordetella pertussis a new control mechanism mediated by a small protein called CruR, for copper-responsive upstream regulator. While being translated by the ribosome CruR is able to perceive intracellular copper, which shuts down the transcription of downstream genes of the same operon, coding for a copper uptake system. This mechanism limits the import of copper in conditions where it is abundant for the bacterium. This is the first report of "posttranscriptional regulation" in response to copper. Homologs of CruR genes head many operons harboring copper-related genes in various bacteria, and therefore the regulatory function unveiled here is likely a general property of this new protein family.


Assuntos
Cobre , Óperon , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Cobre/metabolismo , Regulação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Fases de Leitura Aberta , Ribossomos/metabolismo
6.
Commun Biol ; 5(1): 120, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140348

RESUMO

The bacterial Rho factor is a ring-shaped motor triggering genome-wide transcription termination and R-loop dissociation. Rho is essential in many species, including in Mycobacterium tuberculosis where rho gene inactivation leads to rapid death. Yet, the M. tuberculosis Rho [MtbRho] factor displays poor NTPase and helicase activities, and resistance to the natural Rho inhibitor bicyclomycin [BCM] that remain unexplained. To address these issues, we solved the cryo-EM structure of MtbRho at 3.3 Šresolution. The MtbRho hexamer is poised into a pre-catalytic, open-ring state wherein specific contacts stabilize ATP in intersubunit ATPase pockets, thereby explaining the cofactor preference of MtbRho. We reveal a leucine-to-methionine substitution that creates a steric bulk in BCM binding cavities near the positions of ATP γ-phosphates, and confers resistance to BCM at the expense of motor efficiency. Our work contributes to explain the unusual features of MtbRho and provides a framework for future antibiotic development.


Assuntos
Mycobacterium tuberculosis , Compostos Bicíclicos Heterocíclicos com Pontes , Microscopia Crioeletrônica , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Fator Rho/química , Fator Rho/genética , Fator Rho/metabolismo , Fatores de Transcrição/metabolismo
7.
J Mol Biol ; 433(15): 167060, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34023400

RESUMO

Rho-dependent termination of transcription (RDTT) is a critical regulatory mechanism specific to bacteria. In a subset of species including most Actinobacteria and Bacteroidetes, the Rho factor contains a large, poorly conserved N-terminal insertion domain (NID) of cryptic function. To date, only two NID-bearing Rho factors from high G + C Actinobacteria have been thoroughly characterized. Both can trigger RDTT at promoter-proximal sites or with structurally constrained transcripts that are unsuitable for the archetypal, NID-less Rho factor of Escherichia coli (EcRho). Here, we provide the first biochemical characterization of a NID-bearing Rho factor from a low G + C bacterium. We show that Bacteroides fragilis Rho (BfRho) is a bona fide RNA-dependent NTPase motor able to unwind long RNA:DNA duplexes and to disrupt transcription complexes. The large NID (~40% of total mass) strongly increases BfRho affinity for RNA, is strictly required for RDTT, but does not promote RDTT at promoter-proximal sites or with a structurally constrained transcript. Furthermore, the NID does not preclude modulation of RDTT by transcription factors NusA and NusG or by the Rho inhibitor bicyclomycin. Although the NID contains a prion-like Q/N-rich motif, it does not spontaneously trigger formation of ß-amyloids. Thus, despite its unusually large RNA binding domain, BfRho behaves more like the NID-less EcRho than NID-bearing counterparts from high G + C Actinobacteria. Our data highlight the evolutionary plasticity of Rho's N-terminal region and illustrate how RDTT is adapted to distinct genomic contents.


Assuntos
Bacteroides fragilis/metabolismo , Mutagênese Insercional , RNA Mensageiro/metabolismo , Fator Rho/química , Fator Rho/metabolismo , Bacteroides fragilis/química , Bacteroides fragilis/genética , Composição de Bases , Sítios de Ligação/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , DNA Bacteriano/metabolismo , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Domínios Proteicos/efeitos dos fármacos , RNA Bacteriano/metabolismo , Fator Rho/genética , Fatores de Transcrição/metabolismo , Terminação da Transcrição Genética
8.
Methods Mol Biol ; 2209: 143-161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33201468

RESUMO

Transcription termination factor Rho contributes to shape the transcriptomes of many bacteria and is essential in a large subset of them. Although the transcription termination function of Rho is not always easy to reconstitute and to study in vitro, assays based on the ATP-dependent RNA-DNA hybrid unwinding activity of the factor can prove useful to dissect Rho mechanisms or to seek new antibiotics targeting Rho. However, current in vitro assays of Rho helicase activity are time-consuming, as they usually require radiolabeling of the hybrid substrates and analysis of reaction products by gel electrophoresis. Here, we describe a fluorescence-based microplate assay that informs on Rho helicase activity in a matter of minutes and allows the multiplexed analysis of conditions required for primary biochemical characterization or for drug screening.


Assuntos
DNA Bacteriano/química , Fluorescência , RNA Bacteriano/química , Fator Rho/química , Proteínas de Escherichia coli/química , Ligação Proteica , Conformação Proteica , Terminação da Transcrição Genética
9.
Biochim Biophys Acta Gene Regul Mech ; 1863(7): 194546, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32217107

RESUMO

The largest and best studied group of regulatory small RNAs (sRNAs) in bacteria act by modulating translation or turnover of messenger RNAs (mRNAs) through base-pairing interactions that typically take place near the 5' end of the mRNA. This allows the sRNA to bind the complementary target sequence while the remainder of the mRNA is still being made, creating conditions whereby the action of the sRNA can extend to transcriptional steps, most notably transcription termination. Increasing evidence corroborates the existence of a functional interplay between sRNAs and termination factor Rho. Two general mechanisms have emerged. One mechanism operates in translated regions subjected to sRNA repression. By inhibiting ribosome binding co-transcriptionally, the sRNA uncouples translation from transcription, allowing Rho to bind the nascent RNA and promote termination. In the second mechanism, which functions in 5' untranslated regions, the sRNA antagonizes termination directly by interfering with Rho binding to the RNA or the subsequent translocation along the RNA. Here, we review the above literature in the context of other mechanisms that underlie the participation of Rho-dependent transcription termination in gene regulation. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.


Assuntos
Regulação Bacteriana da Expressão Gênica , Pequeno RNA não Traduzido/metabolismo , Fator Rho/metabolismo , Terminação da Transcrição Genética , Bactérias/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , Fator Rho/genética
10.
PLoS Genet ; 15(10): e1008425, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31589608

RESUMO

Evolutionarily conserved NusG protein enhances bacterial RNA polymerase processivity but can also promote transcription termination by binding to, and stimulating the activity of, Rho factor. Rho terminates transcription upon anchoring to cytidine-rich motifs, the so-called Rho utilization sites (Rut) in nascent RNA. Both NusG and Rho have been implicated in the silencing of horizontally-acquired A/T-rich DNA by nucleoid structuring protein H-NS. However, the relative roles of the two proteins in H-NS-mediated gene silencing remain incompletely defined. In the present study, a Salmonella strain carrying the nusG gene under the control of an arabinose-inducible repressor was used to assess the genome-wide response to NusG depletion. Results from two complementary approaches, i) screening lacZ protein fusions generated by random transposition and ii) transcriptomic analysis, converged to show that loss of NusG causes massive upregulation of Salmonella pathogenicity islands (SPIs) and other H-NS-silenced loci. A similar, although not identical, SPI-upregulated profile was observed in a strain with a mutation in the rho gene, Rho K130Q. Surprisingly, Rho mutation Y80C, which affects Rho's primary RNA binding domain, had either no effect or made H-NS-mediated silencing of SPIs even tighter. Thus, while corroborating the notion that bound H-NS can trigger Rho-dependent transcription termination in vivo, these data suggest that H-NS-elicited termination occurs entirely through a NusG-dependent pathway and is less dependent on Rut site binding by Rho. We provide evidence that through Rho recruitment, and possibly through other still unidentified mechanisms, NusG prevents pervasive transcripts from elongating into H-NS-silenced regions. Failure to perform this function causes the feedforward activation of the entire Salmonella virulence program. These findings provide further insight into NusG/Rho contribution in H-NS-mediated gene silencing and underscore the importance of this contribution for the proper functioning of a global regulatory response in growing bacteria. The complete set of transcriptomic data is freely available for viewing through a user-friendly genome browser interface.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Alongamento de Peptídeos/metabolismo , Salmonella typhimurium/genética , Fatores de Transcrição/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Loci Gênicos , Fatores de Alongamento de Peptídeos/genética , RNA Bacteriano/metabolismo , Fator Rho/genética , Fator Rho/metabolismo , Salmonella typhimurium/patogenicidade , Fatores de Transcrição/genética , Terminação da Transcrição Genética , Regulação para Cima , Fatores de Virulência/genética
11.
Biochemistry ; 58(7): 865-874, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30624903

RESUMO

Transcription termination mediated by the ring-shaped, ATP-dependent Rho motor is a multipurpose regulatory mechanism specific to bacteria and constitutes an interesting target for the development of new antibiotics. Although Rho-dependent termination can punctuate gene expression or contribute to the protection of the genome at hundreds of sites within a given bacterium, its exact perimeter and site- or species-specific features remain insufficiently characterized. New advanced approaches are required to explore thoroughly the diversity of Rho-dependent terminators and the complexity of associated mechanisms. Current in vitro analyses of Rho-dependent termination rely on radiolabeling, gel electrophoresis, and phosphorimaging of transcription reaction products and are thus hazardous, inconvenient, and low-throughput. To address these limitations, we have developed the first in vitro assay using a fluorescence detection modality to study Rho-dependent transcription termination. This powerful experimental tool accurately estimates terminator strengths in a matter of minutes and is optimized for a microplate reader format allowing multiplexed characterization of putative terminator sequences and mechanisms or high-throughput screening of new drugs targeting Rho-dependent termination.


Assuntos
Bioquímica/métodos , Corantes Fluorescentes , Fator Rho/genética , Terminação da Transcrição Genética , Sondas Moleculares/genética , Fator Rho/metabolismo , Espectrometria de Fluorescência , p-Dimetilaminoazobenzeno/análogos & derivados
12.
Nucleic Acids Res ; 46(16): 8245-8260, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-29931073

RESUMO

Bacterial transcription termination proceeds via two main mechanisms triggered either by simple, well-conserved (intrinsic) nucleic acid motifs or by the motor protein Rho. Although bacterial genomes can harbor hundreds of termination signals of either type, only intrinsic terminators are reliably predicted. Computational tools to detect the more complex and diversiform Rho-dependent terminators are lacking. To tackle this issue, we devised a prediction method based on Orthogonal Projections to Latent Structures Discriminant Analysis [OPLS-DA] of a large set of in vitro termination data. Using previously uncharacterized genomic sequences for biochemical evaluation and OPLS-DA, we identified new Rho-dependent signals and quantitative sequence descriptors with significant predictive value. Most relevant descriptors specify features of transcript C>G skewness, secondary structure, and richness in regularly-spaced 5'CC/UC dinucleotides that are consistent with known principles for Rho-RNA interaction. Descriptors collectively warrant OPLS-DA predictions of Rho-dependent termination with a ∼85% success rate. Scanning of the Escherichia coli genome with the OPLS-DA model identifies significantly more termination-competent regions than anticipated from transcriptomics and predicts that regions intrinsically refractory to Rho are primarily located in open reading frames. Altogether, this work delineates features important for Rho activity and describes the first method able to predict Rho-dependent terminators in bacterial genomes.


Assuntos
Biologia Computacional/métodos , Proteínas de Escherichia coli/genética , Genoma Bacteriano/genética , Genômica/métodos , Fator Rho/genética , Terminação da Transcrição Genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Genéticos , Análise Multivariada , Fator Rho/metabolismo
13.
Methods Mol Biol ; 1737: 99-118, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29484590

RESUMO

Besides their well-known posttranscriptional effects on mRNA translation and decay, sRNAs and associated RNA chaperones (e.g., Hfq, CsrA) sometimes regulate gene expression at the transcriptional level. In this case, the sRNA-dependent machinery modulates the activity of the transcription termination factor Rho, a ring-shaped RNA translocase/helicase that dissociates transcription elongation complexes at specific loci of the bacterial genome. Here, we describe biochemical assays to detect Rho-dependent termination signals in genomic regions of interest and to assess the effects of sRNAs and/or associated RNA chaperones on such signals.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Chaperonas Moleculares/metabolismo , Pequeno RNA não Traduzido/genética , Proteínas de Ligação a RNA/metabolismo , Terminação da Transcrição Genética , Proteínas de Escherichia coli/genética , Técnicas In Vitro , Chaperonas Moleculares/genética , RNA Bacteriano/genética , Proteínas de Ligação a RNA/genética
14.
Trends Genet ; 32(8): 508-522, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27371117

RESUMO

Transcription initiates pervasively in all organisms, which challenges the notion that the information to be expressed is selected mainly based on mechanisms defining where and when transcription is started. Together with post-transcriptional events, termination of transcription is essential for sorting out the functional RNAs from a plethora of transcriptional products that seemingly have no use in the cell. But terminating transcription is not that easy, given the high robustness of the elongation process. We review here many of the strategies that prokaryotic and eukaryotic cells have adopted to dismantle the elongation complex in a timely and efficient manner. We highlight similarities and diversity, underlying the existence of common principles in a diverse set of functionally convergent solutions.


Assuntos
RNA/genética , Terminação da Transcrição Genética , Transcrição Gênica , Células Eucarióticas , Humanos , Células Procarióticas , RNA/biossíntese , RNA não Traduzido/genética , Fatores de Transcrição/genética
15.
Nucleic Acids Res ; 43(12): 6099-111, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-25999346

RESUMO

The bacterial transcription termination factor Rho-a ring-shaped molecular motor displaying directional, ATP-dependent RNA helicase/translocase activity-is an interesting therapeutic target. Recently, Rho from Mycobacterium tuberculosis (MtbRho) has been proposed to operate by a mechanism uncoupled from molecular motor action, suggesting that the manner used by Rho to dissociate transcriptional complexes is not conserved throughout the bacterial kingdom. Here, however, we demonstrate that MtbRho is a bona fide molecular motor and directional helicase which requires a catalytic site competent for ATP hydrolysis to disrupt RNA duplexes or transcription elongation complexes. Moreover, we show that idiosyncratic features of the MtbRho enzyme are conferred by a large, hydrophilic insertion in its N-terminal 'RNA binding' domain and by a non-canonical R-loop residue in its C-terminal 'motor' domain. We also show that the 'motor' domain of MtbRho has a low apparent affinity for the Rho inhibitor bicyclomycin, thereby contributing to explain why M. tuberculosis is resistant to this drug. Overall, our findings support that, in spite of adjustments of the Rho motor to specific traits of its hosting bacterium, the basic principles of Rho action are conserved across species and could thus constitute pertinent screening criteria in high-throughput searches of new Rho inhibitors.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , RNA Helicases/metabolismo , Fator Rho/metabolismo , Terminação da Transcrição Genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas Mutantes/metabolismo , RNA Helicases/química , RNA Helicases/genética , RNA de Cadeia Dupla/metabolismo , Fator Rho/química , Fator Rho/genética
16.
Nucleic Acids Res ; 43(4): 2367-77, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25662222

RESUMO

Rho is a ring-shaped, ATP-fueled motor essential for remodeling transcriptional complexes and R-loops in bacteria. Despite years of research on this fundamental model helicase, key aspects of its mechanism of translocation remain largely unknown. Here, we used single-molecule manipulation and fluorescence methods to directly monitor the dynamics of RNA translocation by Rho. We show that the efficiency of Rho activation is strongly dependent on the force applied on the RNA but that, once active, Rho is able to translocate against a large opposing force (at least 7 pN) by a mechanism involving 'tethered tracking'. Importantly, the ability to directly measure dynamics at the single-molecule level allowed us to determine essential motor properties of Rho. Hence, Rho translocates at a rate of ∼56 nt per second under our experimental conditions, which is 2-5 times faster than velocities measured for RNA polymerase under similar conditions. Moreover, the processivity of Rho (∼62 nt at a 7 pN opposing force) is large enough for Rho to reach termination sites without dissociating from its RNA loading site, potentially increasing the efficiency of transcription termination. Our findings unambiguously establish 'tethered tracking' as the main pathway for Rho translocation, support 'kinetic coupling' between Rho and RNA polymerase during Rho-dependent termination, and suggest that forces applied on the nascent RNA transcript by cellular substructures could have important implications for the regulation of transcription and its coupling to translation in vivo.


Assuntos
Fator Rho/metabolismo , Terminação da Transcrição Genética , Cinética , Modelos Moleculares , Transporte Proteico , RNA/metabolismo , Fator Rho/química
17.
Methods Mol Biol ; 1259: 293-311, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25579593

RESUMO

Transcription termination factor Rho is a ring-shaped, homo-hexamieric RNA translocase that dissociates transcription elongation complexes and transcriptional RNA-DNA duplexes (R-loops) in bacteria. The molecular mechanisms underlying these biological functions have been essentially studied with Rho enzymes from Escherichia coli or close Gram-negative relatives. However, phylo-divergent Rho factors may have distinct properties. Here, we describe methods for the preparation and in vitro characterization (ATPase and helicase activities) of the Rho factor from Mycobacterium tuberculosis, a specimen with uncharacteristic molecular and enzymatic features. These methods set the stage for future studies aimed at better defining the diversity of enzymatic properties of Rho across the bacterial kingdom.


Assuntos
Mycobacterium tuberculosis/metabolismo , RNA/química , RNA/metabolismo , Fator Rho/metabolismo , RNA Helicases/metabolismo , Proteínas não Estruturais Virais/metabolismo
18.
Nucleic Acids Res ; 42(14): 9270-84, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25016524

RESUMO

Rho is a ring-shaped, ATP-dependent RNA helicase/translocase that dissociates transcriptional complexes in bacteria. How RNA recognition is coupled to ATP hydrolysis and translocation in Rho is unclear. Here, we develop and use a new combinatorial approach, called time-resolved Nucleotide Analog Interference Probing (trNAIP), to unmask RNA molecular determinants of catalytic Rho function. We identify a regulatory step in the translocation cycle involving recruitment of the 2'-hydroxyl group of the incoming 3'-RNA nucleotide by a Rho subunit. We propose that this step arises from the intrinsic weakness of one of the subunit interfaces caused by asymmetric, split-ring arrangement of primary RNA tethers around the Rho hexamer. Translocation is at highest stake every seventh nucleotide when the weak interface engages the incoming 3'-RNA nucleotide or breaks, depending on RNA threading constraints in the Rho pore. This substrate-governed, 'test to run' iterative mechanism offers a new perspective on how a ring-translocase may function or be regulated. It also illustrates the interest and versatility of the new trNAIP methodology to unveil the molecular mechanisms of complex RNA-based systems.


Assuntos
Proteínas de Bactérias/metabolismo , Fator Rho/metabolismo , Proteínas de Bactérias/química , DNA/química , DNA/metabolismo , Técnicas de Sonda Molecular , RNA/química , RNA/metabolismo , RNA Helicases/química , RNA Helicases/metabolismo , Fator Rho/química
19.
Genes Dev ; 28(11): 1239-51, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24888591

RESUMO

RNA-binding protein CsrA is a key regulator of a variety of cellular processes in bacteria, including carbon and stationary phase metabolism, biofilm formation, quorum sensing, and virulence gene expression in pathogens. CsrA binds to bipartite sequence elements at or near the ribosome loading site in messenger RNA (mRNA), most often inhibiting translation initiation. Here we describe an alternative novel mechanism through which CsrA achieves negative regulation. We show that CsrA binding to the upstream portion of the 5' untranslated region of Escherichia coli pgaA mRNA-encoding a polysaccharide adhesin export protein-unfolds a secondary structure that sequesters an entry site for transcription termination factor Rho, resulting in the premature stop of transcription. These findings establish a new paradigm for bacterial gene regulation in which remodeling of the nascent transcript by a regulatory protein promotes Rho-dependent transcription attenuation.


Assuntos
Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator Rho/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo , Regiões 5' não Traduzidas/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , RNA Bacteriano/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química
20.
Proc Natl Acad Sci U S A ; 110(35): 14414-9, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940369

RESUMO

Prophages represent a large fraction of prokaryotic genomes and often provide new functions to their hosts, in particular virulence and fitness. How prokaryotic cells maintain such gene providers is central for understanding bacterial genome evolution by horizontal transfer. Prophage excision occurs through site-specific recombination mediated by a prophage-encoded integrase. In addition, a recombination directionality factor (or excisionase) directs the reaction toward excision and prevents the phage genome from being reintegrated. In this work, we describe the role of the transcription termination factor Rho in prophage maintenance through control of the synthesis of transcripts that mediate recombination directionality factor expression and, thus, excisive recombination. We show that Rho inhibition by bicyclomycin allows for the expression of prophage genes that lead to excisive recombination. Thus, besides its role in the silencing of horizontally acquired genes, Rho also maintains lysogeny of defective and functional prophages.


Assuntos
Colífagos/fisiologia , Escherichia coli/virologia , Genoma Bacteriano , Prófagos/fisiologia , Regiões Terminadoras Genéticas , Transcrição Gênica , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Inativação Gênica , Lisogenia , Reação em Cadeia da Polimerase em Tempo Real , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA