Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Brain Spine ; 4: 102818, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726240

RESUMO

Introduction: Postoperative hematomas that require reoperation are a serious, but uncommon complication to glioma surgery. However, smaller blood volumes are frequently observed, but their clinical significance is less known. Research question: What are the incidence rates, risk factors, and patient-reported outcomes of all measurable blood in or near the resection cavity on postoperative MRI in diffuse glioma patients? Material and methods: We manually segmented intradural and extradural blood from early postoperative MRI of 292 diffuse glioma resections. Potential associations between blood volume and tumor characteristics, demographics, and perioperative factors were explored using non-parametric methods. The assessed outcomes were generic and disease-specific patient-reported HRQoL. Results: Out of the 292 MRI scans included, 184 (63%) had intradural blood, and 212 (73%) had extradural blood in or near the resection cavity. The median blood volumes were 0.4 mL and 3.0 mL, respectively. Intradural blood volume was associated with tumor volume, intraoperative blood loss, and EOR. Extradural blood volume was associated with age and tumor volume. Greater intradural blood volume was associated with less headache and cognitive improvement, but not after adjustments for tumor volume. Discussion and conclusions: Postoperative blood on early postoperative MRI is common. Intradural blood volumes tend to be larger in patients with larger tumors, more intraoperative blood loss, or undergoing subtotal resections. Extradural blood volumes tend to be larger in younger patients with larger tumors. Postoperative blood in or near the resection cavity that does not require reoperation does not seem to affect HRQoL in diffuse glioma patients.

2.
Neurooncol Adv ; 6(1): vdad157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38187869

RESUMO

Background: Knowledge about meningioma growth characteristics is needed for developing biologically rational follow-up routines. In this study of untreated meningiomas followed with repeated magnetic resonance imaging (MRI) scans, we studied growth dynamics and explored potential factors associated with tumor growth. Methods: In a single-center cohort study, we included 235 adult patients with radiologically suspected intracranial meningioma and at least 3 MRI scans during follow-up. Tumors were segmented using an automatic algorithm from contrast-enhanced T1 series, and, if needed, manually corrected. Potential meningioma growth curves were statistically compared: linear, exponential, linear radial, or Gompertzian. Factors associated with growth were explored. Results: In 235 patients, 1394 MRI scans were carried out in the median 5-year observational period. Of the models tested, a Gompertzian growth curve best described growth dynamics of meningiomas on group level. 59% of the tumors grew, 27% remained stable, and 14% shrunk. Only 13 patients (5%) underwent surgery during the observational period and were excluded after surgery. Tumor size at the time of diagnosis, multifocality, and length of follow-up were associated with tumor growth, whereas age, sex, presence of peritumoral edema, and hyperintense T2-signal were not significant factors. Conclusions: Untreated meningiomas follow a Gompertzian growth curve, indicating that increasing and potentially doubling subsequent follow-up intervals between MRIs seems biologically reasonable, instead of fixed time intervals. Tumor size at diagnosis is the strongest predictor of future growth, indicating a potential for longer follow-up intervals for smaller tumors. Although most untreated meningiomas grow, few require surgery.

3.
Sci Rep ; 13(1): 18897, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919325

RESUMO

Extent of resection after surgery is one of the main prognostic factors for patients diagnosed with glioblastoma. To achieve this, accurate segmentation and classification of residual tumor from post-operative MR images is essential. The current standard method for estimating it is subject to high inter- and intra-rater variability, and an automated method for segmentation of residual tumor in early post-operative MRI could lead to a more accurate estimation of extent of resection. In this study, two state-of-the-art neural network architectures for pre-operative segmentation were trained for the task. The models were extensively validated on a multicenter dataset with nearly 1000 patients, from 12 hospitals in Europe and the United States. The best performance achieved was a 61% Dice score, and the best classification performance was about 80% balanced accuracy, with a demonstrated ability to generalize across hospitals. In addition, the segmentation performance of the best models was on par with human expert raters. The predicted segmentations can be used to accurately classify the patients into those with residual tumor, and those with gross total resection.


Assuntos
Glioblastoma , Humanos , Europa (Continente) , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Glioblastoma/patologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasia Residual/diagnóstico por imagem , Redes Neurais de Computação , Estudos Multicêntricos como Assunto , Conjuntos de Dados como Assunto
4.
Sci Rep ; 13(1): 15570, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730820

RESUMO

For patients suffering from central nervous system tumors, prognosis estimation, treatment decisions, and postoperative assessments are made from the analysis of a set of magnetic resonance (MR) scans. Currently, the lack of open tools for standardized and automatic tumor segmentation and generation of clinical reports, incorporating relevant tumor characteristics, leads to potential risks from inherent decisions' subjectivity. To tackle this problem, the proposed Raidionics open-source software has been developed, offering both a user-friendly graphical user interface and stable processing backend. The software includes preoperative segmentation models for each of the most common tumor types (i.e., glioblastomas, lower grade gliomas, meningiomas, and metastases), together with one early postoperative glioblastoma segmentation model. Preoperative segmentation performances were quite homogeneous across the four different brain tumor types, with an average Dice around 85% and patient-wise recall and precision around 95%. Postoperatively, performances were lower with an average Dice of 41%. Overall, the generation of a standardized clinical report, including the tumor segmentation and features computation, requires about ten minutes on a regular laptop. The proposed Raidionics software is the first open solution enabling an easy use of state-of-the-art segmentation models for all major tumor types, including preoperative and postsurgical standardized reports.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioblastoma , Neoplasias Meníngeas , Meningioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Software
5.
Ultrasound Med Biol ; 49(9): 2081-2088, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37336691

RESUMO

OBJECTIVE: Pre-clinical trials have obtained promising results that focused ultrasound (FUS) combined with microbubbles (MBs) increases tumor uptake and the therapeutic effect of drugs. The aims of the study described here were to investigate whether FUS and MBs could improve the effect of chemotherapy in patients with liver metastases from colorectal cancer and to investigate the safety and feasibility of using FUS + MBs. METHODS: We included 17 patients with liver metastases from colorectal cancer, selected two lesions in each patient's liver and randomized the lesions for, respectively, treatment with FUS + MBs or control. After chemotherapy (FOLFIRI or FOLFOXIRI), the lesions were treated with FUS (frequency = 1.67 MHz, mechanical index = 0.5, pulse repetition frequency = 0.33 Hz, 33 oscillations, duty cycle = 0.2%-0.4% and MBs (SonoVue) for 35 min). Nine boluses of MBs were injected intravenously at 3.5 min intervals. Patients were scheduled for four cycles of treatment. Changes in the size of metastases were determined from computed tomography images. RESULTS: Treatment with FUS + MBs is safe at the settings used. There was considerable variation in treatment response between lesions and mixed response between lesions receiving only chemotherapy. There is a tendency toward larger-volume reduction in lesions treated with FUS + MBs compared with control lesions, but a mixed response to chemotherapy and lesion heterogeneity make it difficult to interpret the results. CONCLUSION: The combination of FUS and MBs is a safe, feasible and available strategy for improving the effect of chemotherapy in cancer patients. Therapeutic effect was not demonstrated in this trial. Multicenter trials with standardized protocols should be performed.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Microbolhas
6.
PLoS One ; 18(2): e0282110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36827289

RESUMO

PURPOSE: This study aims to explore training strategies to improve convolutional neural network-based image-to-image deformable registration for abdominal imaging. METHODS: Different training strategies, loss functions, and transfer learning schemes were considered. Furthermore, an augmentation layer which generates artificial training image pairs on-the-fly was proposed, in addition to a loss layer that enables dynamic loss weighting. RESULTS: Guiding registration using segmentations in the training step proved beneficial for deep-learning-based image registration. Finetuning the pretrained model from the brain MRI dataset to the abdominal CT dataset further improved performance on the latter application, removing the need for a large dataset to yield satisfactory performance. Dynamic loss weighting also marginally improved performance, all without impacting inference runtime. CONCLUSION: Using simple concepts, we improved the performance of a commonly used deep image registration architecture, VoxelMorph. In future work, our framework, DDMR, should be validated on different datasets to further assess its value.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Neuroimagem , Tomografia Computadorizada por Raios X
7.
Front Med (Lausanne) ; 9: 971873, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186805

RESUMO

Over the past decades, histopathological cancer diagnostics has become more complex, and the increasing number of biopsies is a challenge for most pathology laboratories. Thus, development of automatic methods for evaluation of histopathological cancer sections would be of value. In this study, we used 624 whole slide images (WSIs) of breast cancer from a Norwegian cohort. We propose a cascaded convolutional neural network design, called H2G-Net, for segmentation of breast cancer region from gigapixel histopathological images. The design involves a detection stage using a patch-wise method, and a refinement stage using a convolutional autoencoder. To validate the design, we conducted an ablation study to assess the impact of selected components in the pipeline on tumor segmentation. Guiding segmentation, using hierarchical sampling and deep heatmap refinement, proved to be beneficial when segmenting the histopathological images. We found a significant improvement when using a refinement network for post-processing the generated tumor segmentation heatmaps. The overall best design achieved a Dice similarity coefficient of 0.933±0.069 on an independent test set of 90 WSIs. The design outperformed single-resolution approaches, such as cluster-guided, patch-wise high-resolution classification using MobileNetV2 (0.872±0.092) and a low-resolution U-Net (0.874±0.128). In addition, the design performed consistently on WSIs across all histological grades and segmentation on a representative × 400 WSI took ~ 58 s, using only the central processing unit. The findings demonstrate the potential of utilizing a refinement network to improve patch-wise predictions. The solution is efficient and does not require overlapping patch inference or ensembling. Furthermore, we showed that deep neural networks can be trained using a random sampling scheme that balances on multiple different labels simultaneously, without the need of storing patches on disk. Future work should involve more efficient patch generation and sampling, as well as improved clustering.

8.
Front Neurol ; 13: 932219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968292

RESUMO

For patients suffering from brain tumor, prognosis estimation and treatment decisions are made by a multidisciplinary team based on a set of preoperative MR scans. Currently, the lack of standardized and automatic methods for tumor detection and generation of clinical reports, incorporating a wide range of tumor characteristics, represents a major hurdle. In this study, we investigate the most occurring brain tumor types: glioblastomas, lower grade gliomas, meningiomas, and metastases, through four cohorts of up to 4,000 patients. Tumor segmentation models were trained using the AGU-Net architecture with different preprocessing steps and protocols. Segmentation performances were assessed in-depth using a wide-range of voxel and patient-wise metrics covering volume, distance, and probabilistic aspects. Finally, two software solutions have been developed, enabling an easy use of the trained models and standardized generation of clinical reports: Raidionics and Raidionics-Slicer. Segmentation performances were quite homogeneous across the four different brain tumor types, with an average true positive Dice ranging between 80 and 90%, patient-wise recall between 88 and 98%, and patient-wise precision around 95%. In conjunction to Dice, the identified most relevant other metrics were the relative absolute volume difference, the variation of information, and the Hausdorff, Mahalanobis, and object average symmetric surface distances. With our Raidionics software, running on a desktop computer with CPU support, tumor segmentation can be performed in 16-54 s depending on the dimensions of the MRI volume. For the generation of a standardized clinical report, including the tumor segmentation and features computation, 5-15 min are necessary. All trained models have been made open-access together with the source code for both software solutions and validation metrics computation. In the future, a method to convert results from a set of metrics into a final single score would be highly desirable for easier ranking across trained models. In addition, an automatic classification of the brain tumor type would be necessary to replace manual user input. Finally, the inclusion of post-operative segmentation in both software solutions will be key for generating complete post-operative standardized clinical reports.

9.
Acta Neurochir (Wien) ; 164(3): 703-711, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35142918

RESUMO

PURPOSE: Cognitive function is frequently assessed with objective neuropsychological tests, but patient-reported cognitive function is less explored. We aimed to investigate the preoperative prevalence of patient-reported cognitive impairment in patients with diffuse glioma compared to a matched reference group and explore associated factors. METHODS: We included 237 patients with diffuse glioma and 474 age- and gender-matched controls from the general population. Patient-reported cognitive function was measured using the cognitive function subscale in the European Organisation for Research and Treatment of Cancer QLQ-C30 questionnaire. The transformed scale score (0-100) was dichotomized, with a score of ≤ 75 indicating clinically important patient-reported cognitive impairment. Factors associated with preoperative patient-reported cognitive impairment were explored in a multivariable regression analysis. RESULTS: Cognitive impairment was reported by 49.8% of the diffuse glioma patients and by 23.4% in the age- and gender-matched reference group (p < 0.001). Patients with diffuse glioma had 3.2 times higher odds (95% CI 2.29, 4.58, p < 0.001) for patient-reported cognitive impairment compared to the matched reference group. In the multivariable analysis, large tumor volume, left tumor lateralization, and low Karnofsky Performance Status score were found to be independent predictors for preoperative patient-reported cognitive impairment. CONCLUSIONS: Our findings demonstrate that patient-reported cognitive impairment is a common symptom in patients with diffuse glioma pretreatment, especially in patients with large tumor volumes, left tumor lateralization, and low functional levels. Patient-reported cognitive function may provide important information about patients' subjective cognitive health and disease status and may serve as a complement to or as a screening variable for subsequent objective testing.


Assuntos
Neoplasias Encefálicas , Disfunção Cognitiva , Glioma , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/psicologia , Neoplasias Encefálicas/cirurgia , Cognição , Disfunção Cognitiva/complicações , Disfunção Cognitiva/etiologia , Glioma/complicações , Glioma/epidemiologia , Glioma/cirurgia , Humanos , Medidas de Resultados Relatados pelo Paciente , Qualidade de Vida
10.
Neurosurg Rev ; 45(2): 1543-1552, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34674099

RESUMO

Meningioma is the most common benign intracranial tumor and is believed to arise from arachnoid cap cells of arachnoid granulations. We sought to develop a population-based atlas from pre-treatment MRIs to explore the distribution of intracranial meningiomas and to explore risk factors for development of intracranial meningiomas in different locations. All adults (≥ 18 years old) diagnosed with intracranial meningiomas and referred to the department of neurosurgery from a defined catchment region between 2006 and 2015 were eligible for inclusion. Pre-treatment T1 contrast-enhanced MRI-weighted brain scans were used for semi-automated tumor segmentation to develop the meningioma atlas. Patient variables used in the statistical analyses included age, gender, tumor locations, WHO grade and tumor volume. A total of 602 patients with intracranial meningiomas were identified for the development of the brain tumor atlas from a wide and defined catchment region. The spatial distribution of meningioma within the brain is not uniform, and there were more tumors in the frontal region, especially parasagittally, along the anterior part of the falx, and on the skull base of the frontal and middle cranial fossa. More than 2/3 meningioma patients were females (p < 0.001) who also were more likely to have multiple meningiomas (p < 0.01), while men more often have supratentorial meningiomas (p < 0.01). Tumor location was not associated with age or WHO grade. The distribution of meningioma exhibits an anterior to posterior gradient in the brain. Distribution of meningiomas in the general population is not dependent on histopathological WHO grade, but may be gender-related.


Assuntos
Neoplasias Meníngeas , Meningioma , Neoplasias Supratentoriais , Adolescente , Adulto , Feminino , Humanos , Masculino , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/epidemiologia , Neoplasias Meníngeas/cirurgia , Meningioma/diagnóstico , Meningioma/epidemiologia , Meningioma/cirurgia , Procedimentos Neurocirúrgicos , Estudos Retrospectivos , Neoplasias Supratentoriais/cirurgia
11.
Cancers (Basel) ; 13(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34572900

RESUMO

For patients with presumed glioblastoma, essential tumor characteristics are determined from preoperative MR images to optimize the treatment strategy. This procedure is time-consuming and subjective, if performed by crude eyeballing or manually. The standardized GSI-RADS aims to provide neurosurgeons with automatic tumor segmentations to extract tumor features rapidly and objectively. In this study, we improved automatic tumor segmentation and compared the agreement with manual raters, describe the technical details of the different components of GSI-RADS, and determined their speed. Two recent neural network architectures were considered for the segmentation task: nnU-Net and AGU-Net. Two preprocessing schemes were introduced to investigate the tradeoff between performance and processing speed. A summarized description of the tumor feature extraction and standardized reporting process is included. The trained architectures for automatic segmentation and the code for computing the standardized report are distributed as open-source and as open-access software. Validation studies were performed on a dataset of 1594 gadolinium-enhanced T1-weighted MRI volumes from 13 hospitals and 293 T1-weighted MRI volumes from the BraTS challenge. The glioblastoma tumor core segmentation reached a Dice score slightly below 90%, a patientwise F1-score close to 99%, and a 95th percentile Hausdorff distance slightly below 4.0 mm on average with either architecture and the heavy preprocessing scheme. A patient MRI volume can be segmented in less than one minute, and a standardized report can be generated in up to five minutes. The proposed GSI-RADS software showed robust performance on a large collection of MRI volumes from various hospitals and generated results within a reasonable runtime.

12.
Acta Neurochir (Wien) ; 163(11): 3097-3108, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34468884

RESUMO

BACKGROUND: Prevalence, radiological characteristics, and risk factors for peritumoral infarctions after glioma surgery are not much studied. In this study, we assessed shape, volume, and prevalence of peritumoral infarctions and investigated possible associated factors. METHODS: In a prospective single-center cohort study, we included all adult patients operated for diffuse gliomas from January 2007 to December 2018. Postoperative infarctions were segmented using early postoperative MRI images, and volume, shape, and location of postoperative infarctions were assessed. Heatmaps of the distribution of tumors and infarctions were created. RESULTS: MRIs from 238 (44%) of 539 operations showed restricted diffusion in relation to the operation cavity, interpreted as postoperative infarctions. Of these, 86 (36%) were rim-shaped, 103 (43%) were sector-shaped, 40 (17%) were a combination of rim- and sector-shaped, and six (3%) were remote infarctions. Median infarction volume was 1.7 cm3 (IQR 0.7-4.3, range 0.1-67.1). Infarctions were more common if the tumor was in the temporal lobe, and the map shows more infarctions in the periventricular watershed areas. Sector-shaped infarctions were more often seen in patients with known cerebrovascular disease (47.6% vs. 25.5%, p = 0.024). There was a positive correlation between infarction volume and tumor volume (r = 0.267, p < 0.001) and infarction volume and perioperative bleeding (r = 0.176, p = 0.014). Moreover, there was a significant positive association between age and larger infarction volumes (r = 0.193, p = 0.003). Infarction rates and infarction volumes varied across individual surgeons, p = 0.037 (range 32-72%) and p = 0.026. CONCLUSIONS: In the present study, peritumoral infarctions occurred in 44% after diffuse glioma operations. Infarctions were more common in patients operated for tumors in the temporal lobe but were not more common following recurrent surgeries. Sector-shaped infarctions were more common in patients with known cerebrovascular disease. Increasing age, larger tumors, and more perioperative bleeding were factors associated with infarction volumes. The risk of infarctions and infarction volumes may also be surgeon-dependent.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Infarto Encefálico/diagnóstico por imagem , Infarto Encefálico/epidemiologia , Infarto Encefálico/etiologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/cirurgia , Estudos de Coortes , Glioma/diagnóstico por imagem , Glioma/epidemiologia , Glioma/cirurgia , Humanos , Imageamento por Ressonância Magnética , Prevalência , Estudos Prospectivos , Fatores de Risco
13.
Cancers (Basel) ; 13(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201021

RESUMO

Treatment decisions for patients with presumed glioblastoma are based on tumor characteristics available from a preoperative MR scan. Tumor characteristics, including volume, location, and resectability, are often estimated or manually delineated. This process is time consuming and subjective. Hence, comparison across cohorts, trials, or registries are subject to assessment bias. In this study, we propose a standardized Glioblastoma Surgery Imaging Reporting and Data System (GSI-RADS) based on an automated method of tumor segmentation that provides standard reports on tumor features that are potentially relevant for glioblastoma surgery. As clinical validation, we determine the agreement in extracted tumor features between the automated method and the current standard of manual segmentations from routine clinical MR scans before treatment. In an observational consecutive cohort of 1596 adult patients with a first time surgery of a glioblastoma from 13 institutions, we segmented gadolinium-enhanced tumor parts both by a human rater and by an automated algorithm. Tumor features were extracted from segmentations of both methods and compared to assess differences, concordance, and equivalence. The laterality, contralateral infiltration, and the laterality indices were in excellent agreement. The native and normalized tumor volumes had excellent agreement, consistency, and equivalence. Multifocality, but not the number of foci, had good agreement and equivalence. The location profiles of cortical and subcortical structures were in excellent agreement. The expected residual tumor volumes and resectability indices had excellent agreement, consistency, and equivalence. Tumor probability maps were in good agreement. In conclusion, automated segmentations are in excellent agreement with manual segmentations and practically equivalent regarding tumor features that are potentially relevant for neurosurgical purposes. Standard GSI-RADS reports can be generated by open access software.

14.
J Med Imaging (Bellingham) ; 8(2): 024002, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33778095

RESUMO

Purpose: Automatic and consistent meningioma segmentation in T1-weighted magnetic resonance (MR) imaging volumes and corresponding volumetric assessment is of use for diagnosis, treatment planning, and tumor growth evaluation. We optimized the segmentation and processing speed performances using a large number of both surgically treated meningiomas and untreated meningiomas followed at the outpatient clinic. Approach: We studied two different three-dimensional (3D) neural network architectures: (i) a simple encoder-decoder similar to a 3D U-Net, and (ii) a lightweight multi-scale architecture [Pulmonary Lobe Segmentation Network (PLS-Net)]. In addition, we studied the impact of different training schemes. For the validation studies, we used 698 T1-weighted MR volumes from St. Olav University Hospital, Trondheim, Norway. The models were evaluated in terms of detection accuracy, segmentation accuracy, and training/inference speed. Results: While both architectures reached a similar Dice score of 70% on average, the PLS-Net was more accurate with an F 1 -score of up to 88%. The highest accuracy was achieved for the largest meningiomas. Speed-wise, the PLS-Net architecture tended to converge in about 50 h while 130 h were necessary for U-Net. Inference with PLS-Net takes less than a second on GPU and about 15 s on CPU. Conclusions: Overall, with the use of mixed precision training, it was possible to train competitive segmentation models in a relatively short amount of time using the lightweight PLS-Net architecture. In the future, the focus should be brought toward the segmentation of small meningiomas ( < 2 ml ) to improve clinical relevance for automatic and early diagnosis and speed of growth estimates.

15.
Front Radiol ; 1: 711514, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37492175

RESUMO

Purpose: Meningiomas are the most common type of primary brain tumor, accounting for ~30% of all brain tumors. A substantial number of these tumors are never surgically removed but rather monitored over time. Automatic and precise meningioma segmentation is, therefore, beneficial to enable reliable growth estimation and patient-specific treatment planning. Methods: In this study, we propose the inclusion of attention mechanisms on top of a U-Net architecture used as backbone: (i) Attention-gated U-Net (AGUNet) and (ii) Dual Attention U-Net (DAUNet), using a three-dimensional (3D) magnetic resonance imaging (MRI) volume as input. Attention has the potential to leverage the global context and identify features' relationships across the entire volume. To limit spatial resolution degradation and loss of detail inherent to encoder-decoder architectures, we studied the impact of multi-scale input and deep supervision components. The proposed architectures are trainable end-to-end and each concept can be seamlessly disabled for ablation studies. Results: The validation studies were performed using a five-fold cross-validation over 600 T1-weighted MRI volumes from St. Olavs Hospital, Trondheim University Hospital, Norway. Models were evaluated based on segmentation, detection, and speed performances, and results are reported patient-wise after averaging across all folds. For the best-performing architecture, an average Dice score of 81.6% was reached for an F1-score of 95.6%. With an almost perfect precision of 98%, meningiomas smaller than 3 ml were occasionally missed hence reaching an overall recall of 93%. Conclusion: Leveraging global context from a 3D MRI volume provided the best performances, even if the native volume resolution could not be processed directly due to current GPU memory limitations. Overall, near-perfect detection was achieved for meningiomas larger than 3 ml, which is relevant for clinical use. In the future, the use of multi-scale designs and refinement networks should be further investigated. A larger number of cases with meningiomas below 3 ml might also be needed to improve the performance for the smallest tumors.

16.
J Neurooncol ; 146(2): 373-380, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31915981

RESUMO

BACKGROUND: Malignant transformation represents the natural evolution of diffuse low-grade gliomas (LGG). This is a catastrophic event, causing neurocognitive symptoms, intensified treatment and premature death. However, little is known concerning the spatial distribution of malignant transformation in patients with LGG. MATERIALS AND METHODS: Patients histopathological diagnosed with LGG and subsequent radiological malignant transformation were identified from two different institutions. We evaluated the spatial distribution of malignant transformation with (1) visual inspection and (2) segmentations of longitudinal tumor volumes. In (1) a radiological transformation site < 2 cm from the tumor on preceding MRI was defined local transformation. In (2) overlap with pretreatment volume after importation into a common space was defined as local transformation. With a centroid model we explored if there were particular patterns of transformations within relevant subgroups. RESULTS: We included 43 patients in the clinical evaluation, and 36 patients had MRIs scans available for longitudinal segmentations. Prior to malignant transformation, residual radiological tumor volumes were > 10 ml in 93% of patients. The transformation site was considered local in 91% of patients by clinical assessment. Patients treated with radiotherapy prior to transformation had somewhat lower rate of local transformations (83%). Based upon the segmentations, the transformation was local in 92%. We did not observe any particular pattern of transformations in examined molecular subgroups. CONCLUSION: Malignant transformation occurs locally and within the T2w hyperintensities in most patients. Although LGG is an infiltrating disease, this data conceptually strengthens the role of loco-regional treatments in patients with LGG.


Assuntos
Neoplasias Encefálicas/patologia , Transformação Celular Neoplásica/patologia , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estudos Retrospectivos , Análise Espacial
17.
Int J Comput Assist Radiol Surg ; 14(6): 977-986, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30891655

RESUMO

PURPOSE: Accurate lung cancer diagnosis is crucial to select the best course of action for treating the patient. From a simple chest CT volume, it is necessary to identify whether the cancer has spread to nearby lymph nodes or not. It is equally important to know precisely where each malignant lymph node is with respect to the surrounding anatomical structures and the airways. In this paper, we introduce a new data-set containing annotations of fifteen different anatomical structures in the mediastinal area, including lymph nodes of varying sizes. We present a 2D pipeline for semantic segmentation and instance detection of anatomical structures and potentially malignant lymph nodes in the mediastinal area. METHODS: We propose a 2D pipeline combining the strengths of U-Net for pixel-wise segmentation using a loss function dealing with data imbalance and Mask R-CNN providing instance detection and improved pixel-wise segmentation within bounding boxes. A final stage performs pixel-wise labels refinement and 3D instance detection using a tracking approach along the slicing dimension. Detected instances are represented by a 3D pixel-wise mask, bounding volume, and centroid position. RESULTS: We validated our approach following a fivefold cross-validation over our new data-set of fifteen lung cancer patients. For the semantic segmentation task, we reach an average Dice score of 76% over all fifteen anatomical structures. For the lymph node instance detection task, we reach 75% recall for 9 false positives per patient, with an average centroid position estimation error of 3 mm in each dimension. CONCLUSION: Fusing 2D networks' results increases pixel-wise segmentation results while enabling good instance detection. Better leveraging of the 3D information and station mapping for the detected lymph nodes are the next steps.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Pulmão/patologia , Linfonodos/diagnóstico por imagem , Mediastino/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Humanos , Neoplasias Pulmonares/patologia , Linfonodos/patologia , Mediastino/patologia , Estadiamento de Neoplasias
18.
Int J Comput Assist Radiol Surg ; 13(12): 1949-1957, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30054776

RESUMO

PURPOSE: Smaller incisions and reduced surgical trauma made minimally invasive surgery (MIS) grow in popularity even though long training is required to master the instrument manipulation constraints. While numerous training systems have been developed in the past, very few of them tackled fetal surgery and more specifically the treatment of twin-twin transfusion syndrome (TTTS). To address this lack of training resources, this paper presents a novel mixed-reality surgical trainer equipped with comprehensive sensing for TTTS procedures. The proposed trainer combines the benefits of box trainer technology and virtual reality systems. Face and content validation studies are presented and a use-case highlights the benefits of having embedded sensors. METHODS: Face and content validity of the developed setup was assessed by asking surgeons from the field of fetal MIS to accomplish specific tasks on the trainer. A small use-case investigates whether the trainer sensors are able to distinguish between an easy and difficult scenario. RESULTS: The trainer was deemed sufficiently realistic and its proposed tasks relevant for practicing the required motor skills. The use-case demonstrated that the motion and force sensing capabilities of the trainer were able to analyze surgical skill. CONCLUSION: The developed trainer for fetal laser surgery was validated by surgeons from a specialized center in fetal medicine. Further similar investigations in other centers are of interest, as well as quality improvements which will allow to increase the difficulty of the trainer. The comprehensive sensing appeared to be capable of objectively assessing skill.


Assuntos
Simulação por Computador , Educação de Pós-Graduação em Medicina/métodos , Doenças Fetais/cirurgia , Terapia a Laser/instrumentação , Procedimentos Cirúrgicos Minimamente Invasivos/educação , Pediatria/educação , Interface Usuário-Computador , Competência Clínica , Feminino , Humanos , Laparoscopia/educação , Gravidez
19.
Med Image Anal ; 35: 633-654, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27744253

RESUMO

In recent years, tremendous progress has been made in surgical practice for example with Minimally Invasive Surgery (MIS). To overcome challenges coming from deported eye-to-hand manipulation, robotic and computer-assisted systems have been developed. Having real-time knowledge of the pose of surgical tools with respect to the surgical camera and underlying anatomy is a key ingredient for such systems. In this paper, we present a review of the literature dealing with vision-based and marker-less surgical tool detection. This paper includes three primary contributions: (1) identification and analysis of data-sets used for developing and testing detection algorithms, (2) in-depth comparison of surgical tool detection methods from the feature extraction process to the model learning strategy and highlight existing shortcomings, and (3) analysis of validation techniques employed to obtain detection performance results and establish comparison between surgical tool detectors. The papers included in the review were selected through PubMed and Google Scholar searches using the keywords: "surgical tool detection", "surgical tool tracking", "surgical instrument detection" and "surgical instrument tracking" limiting results to the year range 2000 2015. Our study shows that despite significant progress over the years, the lack of established surgical tool data-sets, and reference format for performance assessment and method ranking is preventing faster improvement.


Assuntos
Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Cirurgia Assistida por Computador/instrumentação , Cirurgia Assistida por Computador/métodos , Instrumentos Cirúrgicos , Algoritmos , Consenso , Conjuntos de Dados como Assunto/normas , Humanos , Reprodutibilidade dos Testes , Robótica
20.
Int J Comput Assist Radiol Surg ; 11(6): 1081-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26995598

RESUMO

PURPOSE: With the intention of extending the perception and action of surgical staff inside the operating room, the medical community has expressed a growing interest towards context-aware systems. Requiring an accurate identification of the surgical workflow, such systems make use of data from a diverse set of available sensors. In this paper, we propose a fully data-driven and real-time method for segmentation and recognition of surgical phases using a combination of video data and instrument usage signals, exploiting no prior knowledge. We also introduce new validation metrics for assessment of workflow detection. METHODS: The segmentation and recognition are based on a four-stage process. Firstly, during the learning time, a Surgical Process Model is automatically constructed from data annotations to guide the following process. Secondly, data samples are described using a combination of low-level visual cues and instrument information. Then, in the third stage, these descriptions are employed to train a set of AdaBoost classifiers capable of distinguishing one surgical phase from others. Finally, AdaBoost responses are used as input to a Hidden semi-Markov Model in order to obtain a final decision. RESULTS: On the MICCAI EndoVis challenge laparoscopic dataset we achieved a precision and a recall of 91 % in classification of 7 phases. CONCLUSION: Compared to the analysis based on one data type only, a combination of visual features and instrument signals allows better segmentation, reduction of the detection delay and discovery of the correct phase order.


Assuntos
Algoritmos , Laparoscopia , Cirurgia Assistida por Computador/métodos , Análise e Desempenho de Tarefas , Fluxo de Trabalho , Coleta de Dados , Humanos , Modelos Anatômicos , Salas Cirúrgicas , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA