Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(1): 113601, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38157297

RESUMO

Apicomplexan parasites possess specialized secretory organelles called rhoptries, micronemes, and dense granules that play a vital role in host infection. In this study, we demonstrate that TgREMIND, a protein found in Toxoplasma gondii, is necessary for the biogenesis of rhoptries and dense granules. TgREMIND contains a Fes-CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain, which binds to membrane phospholipids, as well as a novel uncharacterized domain that we have named REMIND (regulator of membrane-interacting domain). Both the F-BAR domain and the REMIND are crucial for TgREMIND functions. When TgREMIND is depleted, there is a significant decrease in the abundance of dense granules and abnormal transparency of rhoptries, leading to a reduction in protein secretion from these organelles. The absence of TgREMIND inhibits host invasion and parasite dissemination, demonstrating that TgREMIND is essential for the proper function of critical secretory organelles required for successful infection by Toxoplasma.


Assuntos
Parasitos , Toxoplasma , Animais , Toxoplasma/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Organelas/metabolismo , Parasitos/metabolismo , Fosfatidilinositóis/metabolismo
2.
J Cell Biol ; 221(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35969857

RESUMO

Lipid droplets (LDs) are the primary organelles of lipid storage, buffering energy fluctuations of the cell. They store neutral lipids in their core that is surrounded by a protein-decorated phospholipid monolayer. LDs arise from the endoplasmic reticulum (ER). The ER protein seipin, localizing at ER-LD junctions, controls LD nucleation and growth. However, how LD biogenesis is spatially and temporally coordinated remains elusive. Here, we show that the lipid transfer proteins ORP5 and ORP8 control LD biogenesis at mitochondria-associated ER membrane (MAM) subdomains, enriched in phosphatidic acid. We found that ORP5/8 regulates seipin recruitment to these MAM-LD contacts, and their loss impairs LD biogenesis. Importantly, the integrity of ER-mitochondria contact sites is crucial for ORP5/8 function in regulating seipin-mediated LD biogenesis. Our study uncovers an unprecedented ORP5/8 role in orchestrating LD biogenesis and maturation at MAMs and brings novel insights into the metabolic crosstalk between mitochondria, ER, and LDs at the membrane contact sites.


Assuntos
Retículo Endoplasmático , Gotículas Lipídicas , Mitocôndrias , Receptores de Esteroides , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Fosfolipídeos/metabolismo , Receptores de Esteroides/metabolismo
3.
mBio ; 12(4): e0089521, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34311575

RESUMO

Legumes of the Medicago genus have a symbiotic relationship with the bacterium Sinorhizobium meliloti and develop root nodules housing large numbers of intracellular symbionts. Members of the nodule-specific cysteine-rich peptide (NCR) family induce the endosymbionts into a terminal differentiated state. Individual cationic NCRs are antimicrobial peptides that have the capacity to kill the symbiont, but the nodule cell environment prevents killing. Moreover, the bacterial broad-specificity peptide uptake transporter BacA and exopolysaccharides contribute to protect the endosymbionts against the toxic activity of NCRs. Here, we show that other S. meliloti functions participate in the protection of the endosymbionts; these include an additional broad-specificity peptide uptake transporter encoded by the yejABEF genes and lipopolysaccharide modifications mediated by lpsB and lpxXL, as well as rpoH1, encoding a stress sigma factor. Strains with mutations in these genes show a strain-specific increased sensitivity profile against a panel of NCRs and form nodules in which bacteroid differentiation is affected. The lpsB mutant nodule bacteria do not differentiate, the lpxXL and rpoH1 mutants form some seemingly fully differentiated bacteroids, although most of the nodule bacteria are undifferentiated, while the yejABEF mutants form hypertrophied but nitrogen-fixing bacteroids. The nodule bacteria of all the mutants have a strongly enhanced membrane permeability, which is dependent on the transport of NCRs to the endosymbionts. Our results suggest that S. meliloti relies on a suite of functions, including peptide transporters, the bacterial envelope structures, and stress response regulators, to resist the aggressive assault of NCR peptides in the nodule cells. IMPORTANCE The nitrogen-fixing symbiosis of legumes with rhizobium bacteria has a predominant ecological role in the nitrogen cycle and has the potential to provide the nitrogen required for plant growth in agriculture. The host plants allow the rhizobia to colonize specific symbiotic organs, the nodules, in large numbers in order to produce sufficient reduced nitrogen for the plants' needs. Some legumes, including Medicago spp., produce massively antimicrobial peptides to keep this large bacterial population in check. These peptides, known as NCRs, have the potential to kill the rhizobia, but in nodules, they rather inhibit the division of the bacteria, which maintain a high nitrogen-fixing activity. In this study, we show that the tempering of the antimicrobial activity of the NCR peptides in the Medicago symbiont Sinorhizobium meliloti is multifactorial and requires the YejABEF peptide transporter, the lipopolysaccharide outer membrane, and the stress response regulator RpoH1.


Assuntos
Peptídeos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana , Medicago truncatula/química , Sinorhizobium meliloti/efeitos dos fármacos , Sinorhizobium meliloti/metabolismo , Peptídeos Antimicrobianos/genética , Medicago truncatula/microbiologia , Fixação de Nitrogênio , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/genética , Simbiose
4.
J Neuropathol Exp Neurol ; 80(4): 366-376, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33693846

RESUMO

Nemaline myopathy type 6 (NEM6), KBTBD13-related congenital myopathy is caused by mutated KBTBD13 protein that interacts improperly with thin filaments/actin, provoking impaired muscle-relaxation kinetics. We describe muscle morphology in 18 Dutch NEM6 patients and correlate it with clinical phenotype and pathophysiological mechanisms. Rods were found in in 85% of biopsies by light microscopy, and 89% by electron microscopy. A peculiar ring disposition of rods resulting in ring-rods fiber was observed. Cores were found in 79% of NEM6 biopsies by light microscopy, and 83% by electron microscopy. Electron microscopy also disclosed granulofilamentous protein material in 9 biopsies. Fiber type 1 predominance and prominent nuclear internalization were found. Rods were immunoreactive for α-actinin and myotilin. Areas surrounding the rods showed titin overexpression suggesting derangement of the surrounding sarcomeres. NEM6 myopathology hallmarks are prominent cores, rods including ring-rods fibers, nuclear clumps, and granulofilamentous protein material. This material might represent the histopathologic epiphenomenon of altered interaction between mutated KBTBD13 protein and thin filaments. We claim to classify KBTBD13-related congenital myopathy as rod-core myopathy.


Assuntos
Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/genética , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miopatias da Nemalina/epidemiologia , Países Baixos/epidemiologia
5.
Glia ; 69(4): 954-970, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33247858

RESUMO

Intellectual disability in Duchenne muscular dystrophy has been associated with the loss of dystrophin-protein 71, Dp71, the main dystrophin-gene product in the adult brain. Dp71 shows major expression in perivascular macroglial endfeet, suggesting that dysfunctional glial mechanisms contribute to cognitive impairments. In the present study, we investigated the molecular alterations induced by a selective loss of Dp71 in mice, using semi-quantitative immunogold analyses in electron microscopy and immunofluorescence confocal analyses in brain sections and purified gliovascular units. In macroglial pericapillary endfeet of the cerebellum and hippocampus, we found a drastic reduction (70%) of the polarized distribution of aquaporin-4 (AQP4) channels, a 50% reduction of ß-dystroglycan, and a complete loss of α1-syntrophin. Interestingly, in the hippocampus and cortex, these effects were not homogeneous: AQP4 and AQP4ex isoforms were mostly lost around capillaries but preserved in large vessels corresponding to pial arteries, penetrating cortical arterioles, and arterioles of the hippocampal fissure, indicating the presence of Dp71-independent pools of AQP4 in these vascular structures. In conclusion, the depletion of Dp71 strongly alters the distribution of AQP4 selectively in macroglial perivascular endfeet surrounding capillaries. This effect likely affects water homeostasis and blood-brain barrier functions and may thus contribute to the synaptic and cognitive defects associated with Dp71 deficiency.


Assuntos
Distroglicanas , Distrofina , Animais , Aquaporina 4/genética , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Distroglicanas/genética , Distrofina/genética , Camundongos , Neuroglia/metabolismo
6.
FEBS J ; 287(15): 3184-3199, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31901207

RESUMO

The endo-lysosome system is involved in endocytosis, protein sorting, and degradation as well as autophagy. Numerous toxins and pathogens exploit this system to enter host cells and exert their deleterious effects. Modulation of host endo-lysosome pathway may restrict multiple toxins intoxication as well as pathogen infection. ABMA, selected from a high-throughput screening against the cytotoxicity of ricin toxin, exhibits a broad-spectrum antitoxin and antipathogen activity. Here, we show that ABMA selectively retains endocytosed protein and toxin to late endosomes and thus delaying their intracellular trafficking. It also impairs the autophagic flux by excessive fusion of late endosomes and autophagosomes. Its exclusive action on late endosomes and corresponding consequences on the endo-lysosomal pathway and autophagic flux are distinct from known inhibitors such as bafilomycin A1, EGA, or chloroquine. Hence, besides being a broad-spectrum inhibitor of endocytosed toxins and pathogens, ABMA may serve as a molecular tool to dissect endo-lysosome system-related cellular physiology and mechanisms of pathogenesis.


Assuntos
Adamantano/farmacologia , Autofagossomos/fisiologia , Autofagia , Bactérias/efeitos dos fármacos , Benzilaminas/farmacologia , Endocitose , Macrolídeos/farmacologia , Ricina/antagonistas & inibidores , Internalização do Vírus/efeitos dos fármacos , Células A549 , Antifúngicos/farmacologia , Autofagossomos/efeitos dos fármacos , Humanos
7.
Front Microbiol ; 9: 1768, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127775

RESUMO

The recent discovery of cyanobacteria forming intracellular amorphous calcium carbonate (ACC) has challenged the former paradigm suggesting that cyanobacteria-mediated carbonatogenesis was exclusively extracellular. Yet, the mechanisms of intracellular biomineralization in cyanobacteria and in particular whether this takes place within an intracellular microcompartment, remain poorly understood. Here, we analyzed six cyanobacterial strains forming intracellular ACC by transmission electron microscopy. We tested two different approaches to preserve as well as possible the intracellular ACC inclusions: (i) freeze-substitution followed by epoxy embedding and room-temperature ultramicrotomy and (ii) high-pressure freezing followed by cryo-ultramicrotomy, usually referred to as cryo-electron microscopy of vitreous sections (CEMOVIS). We observed that the first method preserved ACC well in 500-nm-thick sections but not in 70-nm-thick sections. However, cell ultrastructures were difficult to clearly observe in the 500-nm-thick sections. In contrast, CEMOVIS provided a high preservation quality of bacterial ultrastructures, including the intracellular ACC inclusions in 50-nm-thick sections. ACC inclusions displayed different textures, suggesting varying brittleness, possibly resulting from different hydration levels. Moreover, an electron dense envelope of ∼2.5 nm was systematically observed around ACC granules in all studied cyanobacterial strains. This envelope may be composed of a protein shell or a lipid monolayer, but not a lipid bilayer as usually observed in other bacteria forming intracellular minerals. Overall, this study evidenced that ACC inclusions formed and were stabilized within a previously unidentified bacterial microcompartment in some species of cyanobacteria.

8.
Sci Rep ; 7(1): 15567, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138439

RESUMO

Intracellular pathogenic microorganisms and toxins exploit host cell mechanisms to enter, exert their deleterious effects as well as hijack host nutrition for their development. A potential approach to treat multiple pathogen infections and that should not induce drug resistance is the use of small molecules that target host components. We identified the compound 1-adamantyl (5-bromo-2-methoxybenzyl) amine (ABMA) from a cell-based high throughput screening for its capacity to protect human cells and mice against ricin toxin without toxicity. This compound efficiently protects cells against various toxins and pathogens including viruses, intracellular bacteria and parasite. ABMA provokes Rab7-positive late endosomal compartment accumulation in mammalian cells without affecting other organelles (early endosomes, lysosomes, the Golgi apparatus, the endoplasmic reticulum or the nucleus). As the mechanism of action of ABMA is restricted to host-endosomal compartments, it reduces cell infection by pathogens that depend on this pathway to invade cells. ABMA may represent a novel class of broad-spectrum compounds with therapeutic potential against diverse severe infectious diseases.


Assuntos
Adamantano/análogos & derivados , Compostos de Benzil/farmacologia , Endossomos/efeitos dos fármacos , Ricina/antagonistas & inibidores , Toxinas Biológicas/antagonistas & inibidores , Adamantano/química , Adamantano/farmacologia , Animais , Compostos de Benzil/química , Benzilaminas , Compartimento Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Camundongos , Ricina/efeitos dos fármacos , Ricina/toxicidade , Toxinas Biológicas/química , Toxinas Biológicas/toxicidade
9.
J Struct Biol ; 198(3): 196-202, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28347808

RESUMO

Recently, a number of diverse correlative light and electron microscopy (CLEM) protocols have been developed for several model organisms. However, these CLEM methods have largely bypassed plant cell research, with most protocols having little application to plants. Using autophagosome identification as a biological background, we propose and compare two CLEM protocols that can be performed in most plant research laboratories, providing a good compromise that preserves fluorescent signals as well as ultrastructural features. These protocols are based on either the adaptation of a high pressure fixation/GMA acrylic resin embedding method, or on the Tokuyasu approach. Both protocols suitably preserved GFP fluorescence while allowing the observation of cell ultrastructure in plants. Finally, the advantages and disadvantages of these protocols are discussed in the context of multiscale imaging of plant cells.


Assuntos
Arabidopsis/citologia , Microscopia Eletrônica/métodos , Autofagossomos , Crioultramicrotomia/métodos , Proteínas de Fluorescência Verde , Técnicas Histológicas/métodos , Técnicas Histológicas/normas , Microscopia Eletrônica/normas , Microscopia de Fluorescência/métodos , Raízes de Plantas/citologia , Inclusão do Tecido/métodos
10.
Dev Cell ; 28(1): 43-55, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24374177

RESUMO

The formation of the autophagic vesicles requires the recruitment of ubiquitin-like Atg8 proteins to the membrane of nascent autophagosomes. Seven Atg8 homologs are present in mammals, split into the LC3 and the GABARAP/GATE-16 families, whose respective functions are unknown. Using Caenorhabditis elegans, we investigated the functions of the GABARAP and the LC3 homologs, LGG-1 and LGG-2, in autophagosome biogenesis. Both LGG-1 and LGG-2 localize to the autophagosomes but display partially overlapping patterns. During allophagy, a developmentally stereotyped autophagic flux, LGG-1 acts upstream of LGG-2 to allow its localization to autophagosomes. LGG-2 controls the maturation of LGG-1-positive autophagosomes and facilitates the tethering with the lysosomes through a direct interaction with the VPS-39 HOPS complex subunit. Genetic analyses sustain a sequential implication of LGG-1, LGG-2, RAB-7, and HOPS complex to generate autolysosomes. The duplications of Atg8 in metazoans thus allowed the acquisition of specialized functions for autophagosome maturation.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas de Transporte Vesicular/genética
11.
PLoS Biol ; 11(9): e1001667, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24086111

RESUMO

In internal membrane-containing viruses, a lipid vesicle enclosed by the icosahedral capsid protects the genome. It has been postulated that this internal membrane is the genome delivery device of the virus. Viruses built with this architectural principle infect hosts in all three domains of cellular life. Here, using a combination of electron microscopy techniques, we investigate bacteriophage PRD1, the best understood model for such viruses, to unveil the mechanism behind the genome translocation across the cell envelope. To deliver its double-stranded DNA, the icosahedral protein-rich virus membrane transforms into a tubular structure protruding from one of the 12 vertices of the capsid. We suggest that this viral nanotube exits from the same vertex used for DNA packaging, which is biochemically distinct from the other 11. The tube crosses the capsid through an aperture corresponding to the loss of the peripentonal P3 major capsid protein trimers, penton protein P31 and membrane protein P16. The remodeling of the internal viral membrane is nucleated by changes in osmolarity and loss of capsid-membrane interactions as consequence of the de-capping of the vertices. This engages the polymerization of the tail tube, which is structured by membrane-associated proteins. We have observed that the proteo-lipidic tube in vivo can pierce the gram-negative bacterial cell envelope allowing the viral genome to be shuttled to the host cell. The internal diameter of the tube allows one double-stranded DNA chain to be translocated. We conclude that the assembly principles of the viral tunneling nanotube take advantage of proteo-lipid interactions that confer to the tail tube elastic, mechanical and functional properties employed also in other protein-membrane systems.


Assuntos
Bacteriófago PRD1/genética , Genoma Viral/genética , Nanotubos/virologia , Proteínas da Cauda Viral/metabolismo , Integração Viral/genética , Bacteriófago PRD1/crescimento & desenvolvimento , Bacteriófago PRD1/metabolismo , Capsídeo/metabolismo , Membrana Celular/metabolismo , Membrana Celular/virologia , DNA Viral/genética , Microscopia Eletrônica , Salmonella typhimurium/virologia , Integração Viral/fisiologia
12.
J Mol Biol ; 425(11): 1999-2014, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23500494

RESUMO

Capsids of double-stranded DNA (dsDNA) bacteriophages initially assemble into compact procapsids, which undergo expansion upon the genome packaging. This shell remodeling results from a structural rearrangement of head protein subunits. It is a critical step in the capsid maturation pathway that yields final particles capable to withstand the huge internal pressure generated by the packed DNA. Here, we report on the expansion process of the large capsid (T=13) of bacteriophage T5. We purified the intermediate prohead II form, which is competent for packaging the 121-kbp dsDNA genome, and we investigated its morphology and dimensions using cryo-electron microscopy and small-angle X-ray scattering. Decreasing the pH or the ionic strength triggers expansion of prohead II, converting them into thinner and more faceted capsids isomorphous to the mature virion particles. At low pH, prohead II expansion is a highly cooperative process lacking any detectable intermediate. This two-state reorganization of the capsid lattice per se leads to a remarkable stabilization of the particle. The melting temperature of expanded T5 capsid is virtually identical with that of more complex shells that are reinforced by inter-subunit cross-linking (HK97) or by additional cementing proteins (T4). The T5 capsid with its "simple" two-state conversion thus appears to be a very attractive model for investigating the mechanism of the large-scale allosteric transition that takes place upon the genome packaging of dsDNA bacteriophages.


Assuntos
Capsídeo/química , Capsídeo/ultraestrutura , Siphoviridae/química , Siphoviridae/ultraestrutura , Vírion/química , Vírion/ultraestrutura , Capsídeo/metabolismo , Microscopia Crioeletrônica , Concentração de Íons de Hidrogênio , Concentração Osmolar , Espalhamento a Baixo Ângulo , Siphoviridae/fisiologia , Vírion/fisiologia , Montagem de Vírus , Difração de Raios X
13.
Plant J ; 65(6): 958-71, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21205030

RESUMO

Sphingolipids play an essential role in the functioning of the secretory pathway in eukaryotic organisms. Their importance in the functional organization of plant cells has not been studied in any detail before. The sphingolipid synthesis inhibitor fumonisin B1 (FB1), a mycotoxin acting as a specific inhibitor of ceramide synthase, was tested for its effects on cell growth, cell polarity, cell shape, cell cycle and on the ultrastructure of BY2 cells. We used cell lines expressing different GFP-tagged markers for plant cell compartments, as well as a Golgi marker fused to the photoconvertible protein Kaede. Light and electron microscopy, combined with flow cytometry, were applied to analyse the morphodynamics and architecture of compartments of the secretory pathway. The results indicate that FB1 treatment had severe effects on cell growth and cell shape, and induced a delay in cell division processes. The cell changes were accompanied by the formation of the endoplasmic reticulum (ER)-derived tubular aggregates (FB1-induced compartments), together with an inhibition of cargo transport from the ER to the Golgi apparatus. A change in polar localization of the auxin transporter PIN1 was also observed, but endocytic processes were little affected. Electron microscopy studies confirmed that molecular FB1 targets were distinct from brefeldin A (BFA) targets. We propose that the reported effects of inhibition of ceramide biosynthesis reflect the importance of sphingolipids during cell growth and establishment of cell polarity in higher plant cells, notably through their contribution to the functional organization of the ER or its differentiation into distinct compartments.


Assuntos
Nicotiana/citologia , Nicotiana/metabolismo , Esfingolipídeos/metabolismo , Transporte Biológico Ativo/efeitos dos fármacos , Brefeldina A/farmacologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Inibidores Enzimáticos/farmacologia , Fumonisinas/farmacologia , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Microscopia Eletrônica de Transmissão , Oxirredutases/antagonistas & inibidores , Plantas Geneticamente Modificadas , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA