Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NanoImpact ; 35: 100513, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821170

RESUMO

The past few decades of managing the uncertain risks associated with nanomaterials have provided valuable insights (knowledge gaps, tools, methods, etc.) that are equally important to promote safe and sustainable development and use of advanced materials. Based on these insights, the current paper proposes several actions to optimize the risk and sustainability governance of advanced materials. We emphasise the importance of establishing a European approach for risk and sustainability governance of advanced materials as soon as possible to keep up with the pace of innovation and to manage uncertainty among regulators, industry, SMEs and the public, regarding potential risks and impacts of advanced materials. Coordination of safe and sustainable advanced material research efforts, and data management according to the Findable, Accessible, Interoperable and Reusable (FAIR) principles will enhance the generation of regulatory-relevant knowledge. This knowledge is crucial to identify whether current regulatory standardised and harmonised test methods are adequate to assess advanced materials. At the same time, there is urgent need for responsible innovation beyond regulatory compliance which can be promoted through the Safe and Sustainable Innovation Approach. that combines the Safe and Sustainable by Design concept with Regulatory Preparedness, supported by a trusted environment. We further recommend consolidating all efforts and networks related to the risk and sustainability governance of advanced materials in a single, easy-to-use digital portal. Given the anticipated complexity and tremendous efforts required, we identified the need of establishing an organisational structure dedicated to aligning the fast technological developments in advanced materials with proper risk and sustainability governance. Involvement of multiple stakeholders in a trusted environment ensures a coordinated effort towards the safe and sustainable development, production, and use of advanced materials. The existing infrastructures and network of experts involved in the governance of nanomaterials would form a solid foundation for such an organisational structure.

2.
Environ Int ; 172: 107693, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36701835

RESUMO

Plastic pollution has long been identified as one of the biggest challenges of the 21st century. To tackle this problem, governments are setting stringent recycling targets to keep plastics in a closed loop. Yet, knowledge of the stocks and flows of plastic has not been well integrated into policies. This study presents a dynamic probabilistic economy-wide material flow analysis (MFA) of seven plastic polymers (HDPE, LDPE, PP, PS, PVC, EPS, and PET) in Norway from 2000 to 2050. A total of 40 individual product categories aggregated into nine industrial sectors were examined. An estimated 620 ± 23 kt or 114 kg/capita of these seven plastic polymers was put on the Norwegian market in 2020. Packaging products contributed to the largest share of plastic put on the market (∼40%). The accumulated in-use stock in 2020 was about 3400 ± 56 kt with ∼60% remaining in buildings and construction sector. In 2020, about 460 ± 22 kt of plastic waste was generated in Norway, with half originating from packaging. Although ∼50% of all plastic waste is collected separately from the waste stream, only around 25% is sorted for recycling. Overall, ∼50% of plastic waste is incinerated, ∼15% exported, and ∼10% landfilled. Under a business-as-usual scenario, the plastic put on the market, in-use stock, and waste generation will increase by 65%, 140%, and 90%, respectively by 2050. The outcomes of this work can be used as a guideline for other countries to establish the stocks and flows of plastic polymers from various industrial sectors which is needed for the implementation of necessary regulatory actions and circular strategies. The systematic classification of products suitable for recycling or be made of recyclate will facilitate the safe and sustainable recycling of plastic waste into new products, cap production, lower consumption, and prevent waste generation.


Assuntos
Plásticos , Gerenciamento de Resíduos , Noruega , Embalagem de Produtos , Reciclagem , Poluição Ambiental
4.
Environ Sci Technol ; 55(22): 15040-15050, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34705455

RESUMO

Improving the robustness of maritime emission inventories is important to ensure we fully understand the point of embarkment for transformation pathways of the sector toward the 1.5 and 2°C targets. A bottom-up assessment of emissions of greenhouse gases and aerosols from the maritime sector is presented, accounting for the emissions from fuel production and processing, resulting in a complete "well-to-wake" geospatial inventory. This high-resolution inventory is developed through the use of the state-of-the-art data-driven MariTEAM model, which combines ship technical specifications, ship location data, and historical weather data. The CO2 emissions for 2017 amount to 943 million tonnes, which is 11% lower than the fourth International Maritime Organization's greenhouse gas study for the same year, while larger discrepancies have been found across ship segments. If fuel production is accounted for when developing shipping inventories, total CO2 emissions reported could increase by 11%. In addition to fuel production, effects of weather and heavy traffic regions were found to significantly impact emissions at global and regional levels. The global annual efficiency for different fuels and ship segments in approximated operational conditions were also investigated, indicating the need for more holistic metrics than current ones when seeking appropriate solutions aiming at reducing emissions.


Assuntos
Gases de Efeito Estufa , Navios , Aerossóis
5.
Small ; 16(36): e2002901, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32700443

RESUMO

Nanotechnology is a key enabling technology, which is developing fast and influences many aspects of life. Nanomaterials are already included in a broad range of products and industrial sectors. Nanosafety issues are still a matter of concern for policy makers and stakeholders, but currently, there is no platform where all stakeholders can meet and discuss these issues. A comprehensive overview of all the issues in one single dashboard presenting the output of a decision support system is also lacking. This article outlines a strategy for developing one innovative part of a modular decision support system, designed to support the work of a new Risk Governance Council (RGC) for nanomaterials which will be established through the combined efforts of the GOV4NANO, NANORIGO, and RiskGONE H2020 projects. This new module will consist of guidelines for Ethical Impact Assessment (EIA) for nanomaterials and nanoenabled products. This article offers recommendations for adapting the European Committee for Standardization (CEN) prestandard on Ethical Impact Assessment CWA (CEN Workshop Agreement) 17145-2:2017 (E), to fit into the more-encompassing decision support system for risk governance of nanomaterials within the RiskGONE project.


Assuntos
Técnicas de Apoio para a Decisão , Nanoestruturas , Nanotecnologia , União Europeia , Nanoestruturas/toxicidade , Nanotecnologia/ética , Nanotecnologia/tendências , Segurança
6.
Environ Sci Process Impacts ; 21(12): 2042-2057, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31693034

RESUMO

Electronic waste (e-waste) is informally processed and recycled in Agbogbloshie in Accra (Ghana), which may be the largest such site in West Africa. This industry can lead to significant environmental contamination. In this study, surface dust samples were collected at a range of sites within Accra to establish the offsite consequences of such activities. Fifty-one samples were collected and analysed for 69 elements by ICP-mass spectrometry after nitric acid digestion. The data indicated a significant enrichment in metals associated with solder and copper wire at the site itself and a downwind dispersion of this source material to a distance of approximately 2.0 km. Chlorine and bromine were also elevated at this site as residues from polyvinyl chloride combustion and flame retardants respectively. The elemental composition indicated that only low technology electrical equipment was being treated this way. Multivariate statistical analyses by principal components analysis and polytopic vector analysis identified three sources contributing to the system; (i) burn site residue dispersing within 2 km from the source site, (ii) marine matter on the beaches alone and (iii) the baseline soil conditions of the city of Accra. Risk ratios and hazard quotients developed from the measured concentrations indicated that copper was providing the greatest risk to inhabitants in most cases although nickel, vanadium, chromium and zinc also contributed.


Assuntos
Resíduo Eletrônico/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Reciclagem , Poluentes do Solo/análise , Solo/química , Cromo/análise , Cobre/análise , Monitoramento Ambiental/estatística & dados numéricos , Gana , Análise Multivariada , Níquel/análise
7.
Proc Natl Acad Sci U S A ; 112(20): 6277-82, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25288741

RESUMO

Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11-40 times more copper for photovoltaic systems and 6-14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.


Assuntos
Fontes de Energia Elétrica/economia , Poluentes Ambientais/economia , Aquecimento Global/prevenção & controle , Modelos Econômicos , Energia Renovável , Dióxido de Carbono/química , Cobre/química , Humanos , Ferro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA