Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 23(16): 3683-3693, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37470089

RESUMO

This paper deals with the automatic control of the trajectory of T-lymphocytes using dielectrophoretic (DEP) actuation. Dielectrophoresis is a physical phenomenon induced by a non-uniform electric field enabling application of a force on a dielectric object. In most of the cases, it is used in a passive way. The electric field is in a steady state and the force applied on the cells depends on the cell's characteristics and position inside the channel. These systems are limited as cells with similar characteristics will undergo the same forces. To overcome this issue, active devices where the electric field changes over time were developed. However, the voltages that should be applied to generate the desired electric field are mostly computed offline using finite element methods. Thus, there is a low number of devices using automatic approaches with dielectrophoretic actuation where the electric field is computed and updated in real time based on the current position of the cell. We propose here an experimental bench used to study the automatic trajectory control of cells by dielectrophoresis. The computation of the dielectrophoretic force is done online with a model based on the Fourier series depending on the cell's characteristics, position and electric field. This model allows the use of a controller based on visual feedback running at 120 Hz to control the position of cells inside a microfluidic chip. As cells are sensitive to the electric field, the controller limits the norm of the electric field while maximizing the gradient to maximize the DEP force. Experiments have been performed and T-lymphocytes were successfully steered along several types of trajectories at a speed of five times their size per second. The mean error along those trajectories is below 2 µm. The viability of the cells has been checked after the experiments and confirms that this active DEP actuation does not harm the cells.

2.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37177529

RESUMO

Despite numerous innovations, measuring bacteria concentrations on a routine basis is still time consuming and ensuring accurate measurements requires careful handling. Furthermore, it often requires sampling small volumes of bacteria suspensions which might be poorly representative of the real bacteria concentration. In this paper, we propose a spectroscopy measurement method based on a description of the absorption/attenuation spectra of ESKAPEE bacteria. Concentrations were measured with accuracies less than 2%. In addition, mixing the mathematical description of the absorption/attenuation spectra of mammalian T-cells and bacteria allows for the simultaneous measurements of both species' concentrations. This method allows real-time, sampling-free and seeder-free measurement and can be easily integrated into a closed-system environment.


Assuntos
Bactérias , Mamíferos , Animais , Análise Espectral
3.
Oncogene ; 42(3): 198-208, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400972

RESUMO

Cellular inhibitor of apoptosis-1 (cIAP1) is a signaling regulator with oncogenic properties. It is involved in the regulation of signaling pathways controlling inflammation, cell survival, proliferation, differentiation and motility. It is recruited into membrane-receptor-associated signaling complexes thanks to the molecular adaptor TRAF2. However, the cIAP1/TRAF2 complex exists, independently of receptor engagement, in several subcellular compartments. The present work strengthens the importance of TRAF2 in the oncogenic properties of cIAP1. cIAPs-deficient mouse embryonic fibroblasts (MEFs) were transformed using the HRas-V12 oncogene. Re-expression of cIAP1 enhanced tumor growth in a nude mice xenograft model, and promoted lung tumor nodes formation. Deletion or mutation of the TRAF2-binding site completely abolished the oncogenic properties of cIAP1. Further, cIAP1 mediated the clustering of TRAF2, which was sufficient to stimulate tumor growth. Our TRAF2 interactome analysis showed that cIAP1 was critical for TRAF2 to bind to its protein partners. Thus, cIAP1 and TRAF2 would be two essential subunits of a signaling complex promoting a pro-tumoral signal. cIAP1/TRAF2 promoted the activation of the canonical NF-κB and ERK1/2 signaling pathways. NF-κB-dependent production of IL-6 triggered the activation of the JAK/STAT3 axis in an autocrine manner. Inhibition or downregulation of STAT3 specifically compromised the growth of cIAP1-restored MEFs but not that of MEFs expressing a cIAP1-mutant and treating mice with the STAT3 inhibitor niclosamide completely abrogated cIAP1/TRAF2-mediated tumor growth. Altogether, we demonstrate that cIAP1/TRAF2 binding is essential to promote tumor growth via the activation of the JAK/STAT3 signaling pathway.


Assuntos
NF-kappa B , Neoplasias , Humanos , Animais , Camundongos , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , NF-kappa B/metabolismo , Camundongos Nus , Fibroblastos/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
4.
Orphanet J Rare Dis ; 15(1): 322, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203435

RESUMO

BACKGROUND: Congenital Central Hypoventilation Syndrome (CCHS) is characterized by central hypoventilation due to abnormal autonomic control of breathing and global dysautonomia. Patients harbour heterozygous PHOX-2B gene mutations which are polyalanine repeats of various lengths in most of the cases. A few previous studies have reported learning difficulties and neuropsychological disorders in patients with CCHS. The aims of the present study were (1) to explore the intellectual abilities of a group of children with CCHS followed up in the centre of reference for CCHS in France using the Wechsler batteries of tests, (2) and to assess whether there was any association between CCHS characteristics and various domains of the intellectual functioning. RESULTS: There were 34 consecutive patients (15 males, 19 females) of mean (SD) age of 7.8 (3.8) years, ranging from 4 to 16 years and 6 months. Mean score of full-scale intelligence quotient was 82 (20), being in the low average range. Indexes of working memory and processing speed were significantly lower as compared to the other Wechsler indexes. There were two important findings: (1) full-scale intelligence quotient as well as indexes of verbal comprehension and processing speed were significantly greater in patients with mask ventilation than in those with tracheostomy ventilation (p = 0.012, 0.032 and 0.042 respectively); (2) most interestingly, in the patients with polyalanine repeats mutations, all intellectual indexes negatively correlated with the number of polyalanine expansion, with statistical significance reached for indexes of fluid reasoning and working memory (R = - 0.449, p = 0.032 and R = - 0.562, p = 0.012 respectively). CONCLUSIONS: CCHS increased the risk to develop neurocognitive deficiencies, affecting particularly speed of processing and working memory. Our results suggested that both genetics and ventilation method could be also involved in the physiopathology of neurocognitive impairment. Further investigations were required to untangle the complex underlying processes. Neurocognitive assessments should be performed regularly in children with CCHS in order to plan re-education programs, adapt school integration and improve quality of life.


Assuntos
Hipoventilação , Apneia do Sono Tipo Central , Criança , Feminino , França , Genótipo , Proteínas de Homeodomínio/genética , Humanos , Hipoventilação/congênito , Hipoventilação/genética , Masculino , Qualidade de Vida , Apneia do Sono Tipo Central/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA