Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Ecol ; 49(5-6): 218-229, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37138167

RESUMO

In response to herbivory, most plant species adjust their chemical and morphological phenotype to acquire induced resistance to the attacking herbivore. Induced resistance may be an optimal defence strategy that allows plants to reduce metabolic costs of resistance in the absence of herbivores, allocate resistance to the most valuable plant tissues and tailor its response to the pattern of attack by multiple herbivore species. Moreover, plasticity in resistance decreases the potential that herbivores adapt to specific plant resistance traits and need to deal with a moving target of variable plant quality. Induced resistance additionally allows plants to provide information to other community members to attract natural enemies of its herbivore attacker or inform related neighbouring plants of pending herbivore attack. Despite the clear evolutionary benefits of induced resistance in plants, crop protection strategies to herbivore pests have not exploited the full potential of induced resistance for agriculture. Here, we present evidence that induced resistance offers strong potential to enhance resistance and resilience of crops to (multi-) herbivore attack. Specifically, induced resistance promotes plant plasticity to cope with multiple herbivore species by plasticity in growth and resistance, maximizes biological control by attracting natural enemies and, enhances associational resistance of the plant stand in favour of yield. Induced resistance may be further harnessed by soil quality, microbial communities and associational resistance offered by crop mixtures. In the transition to more sustainable ecology-based cropping systems that have strongly reduced pesticide and fertilizer input, induced resistance may prove to be an invaluable trait in breeding for crop resilience.


Assuntos
Produtos Agrícolas , Herbivoria , Herbivoria/fisiologia , Agricultura , Solo , Evolução Biológica
2.
PLoS Pathog ; 19(3): e1011262, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36947551

RESUMO

Microorganisms living in and on macroorganisms may produce microbial volatile compounds (mVOCs) that characterise organismal odours. The mVOCs might thereby provide a reliable cue to carnivorous enemies in locating their host or prey. Parasitism by parasitoid wasps might alter the microbiome of their caterpillar host, affecting organismal odours and interactions with insects of higher trophic levels such as hyperparasitoids. Hyperparasitoids parasitise larvae or pupae of parasitoids, which are often concealed or inconspicuous. Odours of parasitised caterpillars aid them to locate their host, but the origin of these odours and its relationship to the caterpillar microbiome are unknown. Here, we analysed the odours and microbiome of the large cabbage white caterpillar Pieris brassicae in relation to parasitism by its endoparasitoid Cotesia glomerata. We identified how bacterial presence in and on the caterpillars is correlated with caterpillar odours and tested the attractiveness of parasitised and unparasitised caterpillars to the hyperparasitoid Baryscapus galactopus. We manipulated the presence of the external microbiome and the transient internal microbiome of caterpillars to identify the microbial origin of odours. We found that parasitism by C. glomerata led to the production of five characteristic volatile products and significantly affected the internal and external microbiome of the caterpillar, which were both found to have a significant correlation with caterpillar odours. The preference of the hyperparasitoid was correlated with the presence of the external microbiome. Likely, the changes in external microbiome and body odour after parasitism were driven by the resident internal microbiome of caterpillars, where the bacterium Wolbachia sp. was only present after parasitism. Micro-injection of Wolbachia in unparasitised caterpillars increased hyperparasitoid attraction to the caterpillars compared to untreated caterpillars, while no differences were found compared to parasitised caterpillars. In conclusion, our results indicate that host-parasite interactions can affect multi-trophic interactions and hyperparasitoid olfaction through alterations of the microbiome.


Assuntos
Borboletas , Vespas , Animais , Odorantes , Larva , Borboletas/parasitologia , Vespas/parasitologia , Interações Hospedeiro-Parasita
3.
Anim Microbiome ; 3(1): 73, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654483

RESUMO

BACKGROUND: The microbiome of many insects consists of a diverse community of microorganisms that can play critical roles in the functioning and overall health of their hosts. Although the microbial communities of insects have been studied thoroughly over the past decade, little is still known about how biotic interactions affect the microbial community structure in and on the bodies of insects. In insects that are attacked by parasites or parasitoids, it can be expected that the microbiome of the host insect is affected by the presence of these parasitic organisms that develop in close association with their host. In this study, we used high-throughput amplicon sequencing targeting both bacteria and fungi to test the hypothesis that parasitism by the endoparasitoid Cotesia glomerata affected the microbiome of its host Pieris brassicae. Healthy and parasitized caterpillars were collected from both natural populations and a laboratory culture. RESULTS: Significant differences in bacterial community structure were found between field-collected caterpillars and laboratory-reared caterpillars, and between the external and the internal microbiome of the caterpillars. Parasitism significantly altered the internal microbiome of caterpillars, but not the external microbiome. The internal microbiome of all parasitized caterpillars and of the parasitoid larvae in the caterpillar hosts was dominated by a Wolbachia strain, which was completely absent in healthy caterpillars, suggesting that the strain was transferred to the caterpillars during oviposition by the parasitoids. CONCLUSION: We conclude that biotic interactions such as parasitism have pronounced effects on the microbiome of an insect host and possibly affect interactions with higher-order insects.

4.
New Phytol ; 231(6): 2333-2345, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33484613

RESUMO

Plants are often attacked by multiple insect herbivores. How plants deal with an increasing richness of attackers from a single or multiple feeding guilds is poorly understood. We subjected black mustard (Brassica nigra) plants to 51 treatments representing attack by an increasing species richness (one, two or four species) of either phloem feeders, leaf chewers, or a mix of both feeding guilds when keeping total density of attackers constant and studied how this affects plant resistance to subsequent attack by caterpillars of the diamondback moth (Plutella xylostella). Increased richness in phloem-feeding attackers compromised resistance to P. xylostella. By contrast, leaf chewers induced a stronger resistance to subsequent attack by caterpillars of P. xylostella while species richness did not play a significant role for chewing herbivore induced responses. Attack by a mix of herbivores from different feeding guilds resulted in plant resistance similar to resistance levels of plants that were not previously exposed to herbivory. We conclude that B. nigra plants channel their defence responses stronger towards a feeding-guild specific response when under multi-species attack by herbivores of the same feeding guild, but integrate responses when simultaneously confronted with a mix of herbivores from different feeding guilds.


Assuntos
Herbivoria , Mariposas , Animais , Larva , Mostardeira , Floema
5.
Pest Manag Sci ; 76(2): 432-443, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31713945

RESUMO

Insect hyperparasitoids are fourth trophic level organisms that commonly occur in terrestrial food webs, yet they are relatively understudied. These top-carnivores can disrupt biological pest control by suppressing the populations of their parasitoid hosts, leading to pest outbreaks, especially in confined environments such as greenhouses where augmentative biological control is used. There is no effective eco-friendly strategy that can be used to control hyperparasitoids. Recent advances in the chemical ecology of hyperparasitoid foraging behavior have opened opportunities for manipulating these top-carnivores in such a way that biological pest control becomes more efficient. We propose various infochemical-based strategies to manage hyperparasitoids. We suggest that a push-pull strategy could be a promising approach to 'push' hyperparasitoids away from their parasitoid hosts and 'pull' them into traps. Additionally, we discuss how infochemicals can be used to develop innovative tools improving biological pest control (i) to restrict accessibility of resources (e.g. sugars and alternative hosts) to primary parasitoid only or (ii) to monitor hyperparasitoid presence in the crop for early detection. We also identify important missing information in order to control hyperparasitoids and outline what research is needed to reach this goal. Testing the efficacy of synthetic infochemicals in confined environments is a crucial step towards the implementation of chemical ecology-based approaches targeting hyperparasitoids. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Artrópodes , Animais , Ecologia , Cadeia Alimentar , Interações Hospedeiro-Parasita , Controle Biológico de Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA