Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 12(5): 1816-1821, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38333201

RESUMO

Commercial (protiated) samples of the "green" and biodegradable bioester 2-ethylhexyl laurate (2-EHL) were mixed with D-2-EHL synthesized by hydrothermal deuteration, with the mixtures demonstrating bulk structuring in small-angle neutron scattering measurements. Analysis in a polymer scattering framework yielded a radius of gyration (Rg) of 6.5 Å and a Kuhn length (alternatively described as the persistence length or average segment length) of 11.2 Å. Samples of 2-EHL dispersed in acetonitrile formed self-assembled structures exceeding the molecular dimensions of the 2-EHL, with a mean aggregation number (Nagg) of 3.5 ± 0.2 molecules across the tested concentrations. We therefore present structural evidence that this ester can function as a nonionic (co)surfactant. The available surfactant-like conformations appear to enable performance beyond the low calculated hydrophilic-lipophilic balance value of 2.9. Overall, our data offer an explanation for 2-EHL's interfacial adsorption properties via self-assembly, resulting in strong emolliency and lubricity for this sustainable ester-based bio-oil.

2.
Small ; 19(43): e2300912, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37395635

RESUMO

A series of 19 ionic liquids (ILs) based on phosphonium and imidazolium cations of varying alkyl-chain lengths with the orthoborate anions bis(oxalato)borate [BOB]- , bis(mandelato)borate, [BMB]- and bis(salicylato)borate, [BScB]- , are synthesized and studied using small-angle neutron scattering (SANS). All measured systems display nanostructuring, with 1-methyl-3-n-alkyl imidazolium-orthoborates forming clearly bicontinuous L3 spongelike phases when the alkyl chains are longer than C6 (hexyl). L3 phases are fitted using the Teubner and Strey model, and diffusely-nanostructured systems are primarily fitted using the Ornstein-Zernicke correlation length model. Strongly-nanostructured systems have a strong dependence on the cation, with molecular architecture variation explored to determine the driving forces for self-assembly. The ability to form well-defined complex phases is effectively extinguished in several ways: methylation of the most acidic imidazolium ring proton, replacing the imidazolium 3-methyl group with a longer hydrocarbon chain, substitution of [BOB]- by [BMB]- , or exchanging the imidazolium for phosphonium systems, irrespective of phosphonium architecture. The results suggest there is only a small window of opportunity, in terms of molecular amphiphilicity and cation:anion volume matching, for the formation of stable extensive bicontinuous domains in pure bulk orthoborate-based ILs. Particularly important for self-assembly processes appear to be the ability to form H-bonding networks, which offer additional versatility in imidazolium systems.

3.
Dalton Trans ; 52(19): 6515-6526, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37186240

RESUMO

Light-emitting materials based on earth-abundant metals, such as manganese hold great promise as emitters for organic lighting devices. In order to apply such emitter materials and, in particular, to overcome the problem of self-quenching due to cross-relaxation, we investigated a series of tetrabromidomanganate ([MnBr4]2-) salts with bulky tetraalkylphosphonium counter cations [Pnnn]+, namely [Pnnnn]2[MnBr4] (n = 4 (1), 6 (2) and 8 (3)), which can be obtained by a straightforward reaction of the respective phosphonium bromide and MnBr2. Variation of the cation size allows control of the properties of the resulting ionic materials. 1 and 3 qualify as ionic liquids (ILs), where 1 features a melting point of 68 °C, and 3 is liquid at room temperature and even at very low temperatures. Furthermore, 1 and 2 show the formation of higher-ordered thermotropic mesophases. For 1 a transition to a thermodynamically metastable smectic liquid crystalline phase can be observed at room temperature upon reheating from the metastable glassy state; 2 appears to form a plastic crystalline phase at ∼63 °C, which persists up to the melting point of 235 °C. The photoemission is greatly affected by phase behaviour and ion dynamics. A photoluminescence quantum yield of 61% could be achieved, by balancing the increase in Mn2+-Mn2+ separation and reducing self-quenching through increasingly large organic cations which leads to adverse increased vibrational quenching. Compared to analogous ammonium compounds, which have been promoted as ̈inorganic hybrid perovskites̈, the phosphonium salts show superior performance, with respect to photoluminescent quantum yield and thermal and air/humidity stability. As the presented compounds are not sensitive to the atmosphere, in particular moisture, and show strong visible electroluminescence in the green region of light, they are important emitter materials for use in organic light-emitting devices.

4.
Inorg Chem ; 60(23): 17487-17497, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34783533

RESUMO

In the search for new multifunctional materials, particularly for application in solid-state lighting, a set of terbium salicylato (Sal) complexes of general composition [Cat][Tb(Sal)4] with the commonly ionic liquid-forming (IL) cations [Cat] = (2-hydroxyethyl)trimethylammonium (choline) (Chol+), diallyldimethylammonium (DADMA+), 1-ethyl-3-methylimidazolium (C2C1Im+), 1-butyl-3-methylimidazolium (C4C1Im+), 1-ethyl-3-vinylimidazolium (C2Vim+), and tetrabutylphosphonium (P4444+) were synthesized. All Tb compounds exhibit strong green photoluminescence of high color purity by energy transfer from the ligand in comparison with what the analogous La compounds show, and quantum yields can reach up to 63% upon ligand excitation. When excited with an HF generator, the compounds show strong green electroluminescence with the same features of mission. The findings promise a high potential of application as emitter materials in solid-state lighting. As an additional feature, the Tb compounds show a strong response to applied external fields, rendering them multifunctional materials.

5.
J Am Chem Soc ; 143(48): 20202-20206, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34813310

RESUMO

Many crystalline materials form polymorphs and undergo solid-solid transitions between different forms as a function of temperature or pressure. However, there is still a poor understanding of the mechanism of transformation. Conclusions about the transformation process are typically drawn by comparing the crystal structures before and after the conversion, but gaining detailed mechanistic knowledge is strongly impeded by the generally fast rate of these transitions. When the crystal morphology does not change, it is assumed that crystallinity is maintained throughout the process. Here we report transformation between polymorphs of ZnCl2(1,3-diethylimidazole-2-thione)2 which are sufficiently slow to allow unambiguous assignment of single crystal to single crystal transformation with shape preservation proceeding through an amorphous intermediate phase. This result fundamentally challenges the commonly accepted views of polymorphic phase transition mechanisms.

6.
Chemistry ; 27(52): 13181-13189, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34096644

RESUMO

Access to lanthanide acetate coordination compounds is challenged by the tendency of lanthanides to coordinate water and the plethora of acetate coordination modes. A straightforward, reproducible synthetic procedure by treating lanthanide chloride hydrates with defined ratios of the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([C2 mim][OAc]) has been developed. This reaction pathway leads to two isostructural crystalline anhydrous coordination complexes, the polymeric [C2 mim]n [{Ln2 (OAc)7 }n ] and the dimeric [C2 mim]2 [Ln2 (OAc)8 ], based on the ion size and the ratio of IL used. A reaction with an IL : Ln-salt ratio of 5 : 1, where Ln=Nd, Sm, and Gd, led exclusively to the polymer, whilst for the heaviest lanthanides (Dy-Lu) the dimer was observed. Reaction with Eu and Tb resulted in a mixture of both polymeric and dimeric forms. When the amount of IL and/or the size of the cation was increased, the reaction led to only the dimeric compound for all the lanthanide series. Crystallographic analyses of the resulting salts revealed three different types of metal-acetate coordination modes where η2 µκ2 is the most represented in both structure types.

7.
Dalton Trans ; 42(30): 10997-1004, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23797680

RESUMO

Mixtures of 2,4- and 2,5-disubstituted zirconacyclopentadienes were obtained by the reductive dimerisation of terminal alkynes using the Cp2ZrCl2/lanthanum system. Reactions of dihalophosphines with these mixtures afforded selectively the corresponding 2,4-disubstituted phospholes and 1,4-disubstituted butadienes. A new series of phospholes was characterized by multi-nuclear NMR spectroscopy and X-ray analysis. A possible explanation for the observed selectivity was obtained from X-ray studies and DFT analysis of the intermediate zirconacyclopentadienes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA