Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(33): eabo1754, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984887

RESUMO

Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.

2.
Dis Aquat Organ ; 147: 25-31, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34789585

RESUMO

Aquaculture is an increasingly important food resource, but its sustainability is often limited by disease. In Scombridae fishes, puffy snout syndrome (PSS) is a debilitating condition where tumor-like collagenous growths form around the eyes, nares, and mandibles which impair vision and feeding and frequently lead to mortality. While PSS is considered an infectious or metabolic disease, no disease agents or promoters have been identified. Here, we used electron microscopy (EM) to describe the cellular pathology and search for etiological agents of PSS in Pacific mackerel Scomber japonicus, the first use of this approach for PSS. We examined aquaculture specimens across a range of apparent PSS severity, comparing the results to both wild and aquaculture asymptomatic mackerel. EM imagery consistently revealed viral-like particles in PSS samples, as well as the uniform absence of bacteria, protists, fungi, and other multicellular parasites. In addition to viral-like particles, symptomatic fish had a higher mean percentage of swollen and disintegrating mitochondria than both asymptomatic aquaculture and wild mackerel. This suggests that degraded mitochondria may be related to PSS and could be important to further understanding the origin, promoters, and prevention of PSS. This study serves as a first step in identifying the etiological agents of PSS.


Assuntos
Mitofagia , Perciformes , Animais , Eucariotos , Peixes , Microscopia Eletrônica/veterinária
3.
Data Brief ; 34: 106682, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33392369

RESUMO

In this article, we present and describe a new dataset of non-state actor participation in seven regional fisheries management organizations (RFMOs). The dataset contains institutional, economic and ecological variables relevant for non-state actor participation in RFMOs and for RFMO effectiveness. To code non-state actor participation and institutional factors, we quantify information from publicly available RFMO reports as well as data from the Policy IV dataset. We pair these data with existing datasets on ecological and economic factors from the RAM Legacy and the Sea Around Us databases. This article describes the data collection process and the coded variables in detail.

4.
Commun Biol ; 3(1): 586, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067547

RESUMO

Analyses of the impacts of climate change on fish species have primarily considered dynamic oceanographic variables that are the output of predictive models, yet fish species distributions are determined by much more than just variables such as ocean temperature. Functionally diverse species are differentially influenced by oceanographic as well as physiographic variables such as bottom substrate, thereby influencing their ability to shift distributions. Here, we show that fish species distributions that are more associated with bottom substrate than other dynamic environmental variables have shifted significantly less over the last 30 years than species whose distributions are associated with bottom salinity. Correspondingly, species whose distributions are primarily determined by bottom temperature or ocean salinity have shifted their mean centroid and southern and northern range boundaries significantly more than species whose distributions are determined by substrate or depth. The influence of oceanographic versus static variables differs by species functional group, as benthic species distributions are more associated with substrate and they have shifted significantly less than pelagic species whose distributions are primarily associated with ocean temperatures. In conclusion, benthic fish, that are more influenced by substrate, may prove much less likely to shift distributions under future climate change.


Assuntos
Mudança Climática , Ecossistema , Peixes , Animais , Biomassa , Dinâmica Populacional , Estações do Ano
5.
Proc Biol Sci ; 286(1911): 20191472, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31551061

RESUMO

The distributions of migratory species in the ocean span local, national and international jurisdictions. Across these ecologically interconnected regions, migratory marine species interact with anthropogenic stressors throughout their lives. Migratory connectivity, the geographical linking of individuals and populations throughout their migratory cycles, influences how spatial and temporal dynamics of stressors affect migratory animals and scale up to influence population abundance, distribution and species persistence. Population declines of many migratory marine species have led to calls for connectivity knowledge, especially insights from animal tracking studies, to be more systematically and synthetically incorporated into decision-making. Inclusion of migratory connectivity in the design of conservation and management measures is critical to ensure they are appropriate for the level of risk associated with various degrees of connectivity. Three mechanisms exist to incorporate migratory connectivity into international marine policy which guides conservation implementation: site-selection criteria, network design criteria and policy recommendations. Here, we review the concept of migratory connectivity and its use in international policy, and describe the Migratory Connectivity in the Ocean system, a migratory connectivity evidence-base for the ocean. We propose that without such collaboration focused on migratory connectivity, efforts to effectively conserve these critical species across jurisdictions will have limited effect.


Assuntos
Migração Animal , Conservação dos Recursos Naturais , Política Ambiental , Animais , Ecossistema , Geografia , Oceanos e Mares
6.
Sci Rep ; 9(1): 4918, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894557

RESUMO

Atlantic bluefin tuna (Thunnus thynnus) are highly migratory fish with a contemporary range spanning the North Atlantic Ocean. Bluefin tuna populations have undergone severe decline and the status of the fish within each population remains uncertain. Improved biological knowledge, particularly of natural mortality and rates of mixing of the western (GOM) and eastern (Mediterranean) populations, is key to resolving the current status of the Atlantic bluefin tuna. We evaluated the potential for acoustic tags to yield empirical estimates of mortality and migration rates for long-lived, highly migratory species such as Atlantic bluefin tuna. Bluefin tuna tagged in the Gulf of St. Lawrence (GSL) foraging ground (2009-2016) exhibited high detection rates post release, with 91% crossing receiver lines one year post tagging, 61% detected after year two at large, with detections up to ~1700 days post deployment. Acoustic detections per individual fish ranged from 3 to 4759 receptions. A spatially-structured Bayesian mark recapture model was applied to the acoustic detection data for Atlantic bluefin tuna electronically tagged in the GSL to estimate the rate of instantaneous annual natural mortality. We report a median estimate of 0.10 yr-1 for this experiment. Our results demonstrate that acoustic tags can provide vital fisheries independent estimates for life history parameters critical for improving stock assessment models.


Assuntos
Longevidade/fisiologia , Dinâmica Populacional/tendências , Reprodução/fisiologia , Telemetria/métodos , Atum/fisiologia , Acústica , Migração Animal/fisiologia , Animais , Oceano Atlântico , Teorema de Bayes , Ecossistema , Feminino , Masculino , Mar Mediterrâneo
8.
Proc Natl Acad Sci U S A ; 113(3): 668-73, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26729885

RESUMO

In response to the inherent dynamic nature of the oceans and continuing difficulty in managing ecosystem impacts of fisheries, interest in the concept of dynamic ocean management, or real-time management of ocean resources, has accelerated in the last several years. However, scientists have yet to quantitatively assess the efficiency of dynamic management over static management. Of particular interest is how scale influences effectiveness, both in terms of how it reflects underlying ecological processes and how this relates to potential efficiency gains. Here, we address the empirical evidence gap and further the ecological theory underpinning dynamic management. We illustrate, through the simulation of closures across a range of spatiotemporal scales, that dynamic ocean management can address previously intractable problems at scales associated with coactive and social patterns (e.g., competition, predation, niche partitioning, parasitism, and social aggregations). Furthermore, it can significantly improve the efficiency of management: as the resolution of the closures used increases (i.e., as the closures become more targeted), the percentage of target catch forgone or displaced decreases, the reduction ratio (bycatch/catch) increases, and the total time-area required to achieve the desired bycatch reduction decreases. In the scenario examined, coarser scale management measures (annual time-area closures and monthly full-fishery closures) would displace up to four to five times the target catch and require 100-200 times more square kilometer-days of closure than dynamic measures (grid-based closures and move-on rules). To achieve similar reductions in juvenile bycatch, the fishery would forgo or displace between USD 15-52 million in landings using a static approach over a dynamic management approach.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Oceanos e Mares , Animais , Simulação por Computador , Ecossistema , Modelos Teóricos , Análise Espaço-Temporal
9.
PLoS One ; 10(2): e0116638, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25671316

RESUMO

We analyzed the movements of Atlantic tuna (Thunnus thynnus L.) in the Mediterranean Sea using data from 2 archival tags and 37 pop-up satellite archival tags (PAT). Bluefin tuna ranging in size from 12 to 248 kg were tagged on board recreational boats in the western Mediterranean and the Adriatic Sea between May and September during two different periods (2000 to 2001 and 2008 to 2012). Although tuna migrations between the Mediterranean Sea and the Atlantic Ocean have been well reported, our results indicate that part of the bluefin tuna population remains in the Mediterranean basin for much of the year, revealing a more complex population structure. In this study we demonstrate links between the western Mediterranean, the Adriatic and the Gulf of Sidra (Libya) using over 4336 recorded days of location and behavior data from tagged bluefin tuna with a maximum track length of 394 days. We described the oceanographic preferences and horizontal behaviors during the spawning season for 4 adult bluefin tuna. We also analyzed the time series data that reveals the vertical behavior of one pop-up satellite tag recovered, which was attached to a 43.9 kg tuna. This fish displayed a unique diving pattern within 16 days of the spawning season, suggesting a use of the thermocline as a thermoregulatory mechanism compatible with spawning. The results obtained hereby confirm that the Mediterranean is clearly an important habitat for this species, not only as spawning ground, but also as an overwintering foraging ground.


Assuntos
Comportamento Animal , Ecossistema , Equipamentos e Provisões Elétricas , Perciformes , Migração Animal , Animais , Mar Mediterrâneo , Oceanografia , Astronave
10.
Fish Oceanogr ; 24(6): 508-520, 2015 11.
Artigo em Inglês | MEDLINE | ID: mdl-27667909

RESUMO

To analyze the effects of mesoscale eddies, sea surface temperature (SST), and gear configuration on the catch of Atlantic bluefin (Thunnus thynnus), yellowfin (Thunnus albacares), and bigeye tuna (Thunnus obesus) and swordfish (Xiphias gladius) in the U.S. northwest Atlantic longline fishery, we constructed multivariate statistical models relating these variables to the catch of the four species in 62 121 longline hauls made between 1993 and 2005. During the same 13-year period, 103 anticyclonic eddies and 269 cyclonic eddies were detected by our algorithm in the region 30-55°N, 30-80°W. Our results show that tuna and swordfish catches were associated with different eddy structures. Bluefin tuna catch was highest in anticyclonic eddies whereas yellowfin and bigeye tuna catches were highest in cyclonic eddies. Swordfish catch was found preferentially in regions outside of eddies. Our study confirms that the common practice of targeting tuna with day sets and swordfish with night sets is effective. In addition, bluefin tuna and swordfish catches responded to most of the variables we tested in the opposite directions. Bluefin tuna catch was negatively correlated with longitude and the number of light sticks used whereas swordfish catch was positively correlated with these two variables. We argue that overfishing of bluefin tuna can be alleviated and that swordfish can be targeted more efficiently by avoiding fishing in anticyclonic eddies and in near-shore waters and using more light sticks and fishing at night in our study area, although further studies are needed to propose a solid oceanography-based management plan for catch selection.

11.
Proc Natl Acad Sci U S A ; 111(14): 5271-6, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24639512

RESUMO

Recent research on ocean health has found large predator abundance to be a key element of ocean condition. Fisheries can impact large predator abundance directly through targeted capture and indirectly through incidental capture of nontarget species or bycatch. However, measures of the global nature of bycatch are lacking for air-breathing megafauna. We fill this knowledge gap and present a synoptic global assessment of the distribution and intensity of bycatch of seabirds, marine mammals, and sea turtles based on empirical data from the three most commonly used types of fishing gears worldwide. We identify taxa-specific hotspots of bycatch intensity and find evidence of cumulative impacts across fishing fleets and gears. This global map of bycatch illustrates where data are particularly scarce--in coastal and small-scale fisheries and ocean regions that support developed industrial fisheries and millions of small-scale fishers--and identifies fishing areas where, given the evidence of cumulative hotspots across gear and taxa, traditional species or gear-specific bycatch management and mitigation efforts may be necessary but not sufficient. Given the global distribution of bycatch and the mitigation success achieved by some fleets, the reduction of air-breathing megafauna bycatch is both an urgent and achievable conservation priority.


Assuntos
Aves , Mamíferos , Biologia Marinha , Tartarugas , Animais , Biodiversidade
12.
Proc Biol Sci ; 278(1722): 3191-200, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21429921

RESUMO

Fisheries bycatch is a recognized threat to marine megafauna. Addressing bycatch of pelagic species however is challenging owing to the dynamic nature of marine environments and vagility of these organisms. In order to assess the potential for species to overlap with fisheries, we propose applying dynamic habitat models to determine relative probabilities of species occurrence for specific oceanographic conditions. We demonstrate this approach by modelling habitats for Laysan (Phoebastria immutabilis) and black-footed albatrosses (Phoebastria nigripes) using telemetry data and relating their occurrence probabilities to observations of Hawaii-based longline fisheries in 1997-2000. We found that modelled habitat preference probabilities of black-footed albatrosses were high within some areas of the fishing range of the Hawaiian fleet and such preferences were important in explaining bycatch occurrence. Conversely, modelled habitats of Laysan albatrosses overlapped little with Hawaii-based longline fisheries and did little to explain the bycatch of this species. Estimated patterns of albatross habitat overlap with the Hawaiian fleet corresponded to bycatch observations: black-footed albatrosses were more frequently caught in this fishery despite being 10 times less abundant than Laysan albatrosses. This case study demonstrates that dynamic habitat models based on telemetry data may help to project interactions with pelagic animals relative to environmental features and that such an approach can serve as a tool to guide conservation and management decisions.


Assuntos
Aves/fisiologia , Ecossistema , Pesqueiros/estatística & dados numéricos , Modelos Biológicos , Animais , Simulação por Computador , Conservação dos Recursos Naturais/métodos , Pesqueiros/métodos , Mortalidade , Oceano Pacífico , Dinâmica Populacional , Especificidade da Espécie , Telemetria
13.
PLoS One ; 4(7): e6151, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19582150

RESUMO

Electronic tags were used to examine the seasonal movements, aggregations and diving behaviors of Atlantic bluefin tuna (Thunnus thynnus) to better understand their migration ecology and oceanic habitat utilization. Implantable archival tags (n = 561) were deployed in bluefin tuna from 1996 to 2005 and 106 tags were recovered. Movement paths of the fish were reconstructed using light level and sea-surface-temperature-based geolocation estimates. To quantify habitat utilization we employed a weighted kernel estimation technique that removed the biases of deployment location and track length. Throughout the North Atlantic, high residence times (167+/-33 days) were identified in four spatially confined regions on a seasonal scale. Within each region, bluefin tuna experienced distinct temperature regimes and displayed different diving behaviors. The mean diving depths within the high-use areas were significantly shallower and the dive frequency and the variance in internal temperature significantly higher than during transit movements between the high-use areas. Residence time in the more northern latitude high-use areas was significantly correlated with levels of primary productivity. The regions of aggregation are associated with areas of abundant prey and potentially represent critical foraging habitats that have seasonally abundant prey. Throughout the North Atlantic mean diving depth was significantly correlated with the depth of the thermocline, and dive behavior changed in relation to the stratification of the water column. In this study, with numerous multi-year tracks, there appear to be repeatable patterns of clear aggregation areas that potentially are changing with environmental conditions. The high concentrations of bluefin tuna in predictable locations indicate that Atlantic bluefin tuna are vulnerable to concentrated fishing efforts in the regions of foraging aggregations.


Assuntos
Migração Animal , Comportamento Animal , Mergulho , Estações do Ano , Atum/fisiologia , Animais
14.
Ecol Lett ; 11(12): 1338-50, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19046362

RESUMO

Animal movement has been the focus on much theoretical and empirical work in ecology over the last 25 years. By studying the causes and consequences of individual movement, ecologists have gained greater insight into the behavior of individuals and the spatial dynamics of populations at increasingly higher levels of organization. In particular, ecologists have focused on the interaction between individuals and their environment in an effort to understand future impacts from habitat loss and climate change. Tools to examine this interaction have included: fractal analysis, first passage time, Lévy flights, multi-behavioral analysis, hidden markov models, and state-space models. Concurrent with the development of movement models has been an increase in the sophistication and availability of hierarchical bayesian models. In this review we bring these two threads together by using hierarchical structures as a framework for reviewing individual models. We synthesize emerging themes in movement ecology, and propose a new hierarchical model for animal movement that builds on these emerging themes. This model moves away from traditional random walks, and instead focuses inference on how moving animals with complex behavior interact with their landscape and make choices about its suitability.


Assuntos
Movimento/fisiologia , Migração Animal/fisiologia , Animais , Ecologia/tendências , Meio Ambiente , Modelos Biológicos , Dinâmica Populacional
15.
Nature ; 434(7037): 1121-7, 2005 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-15858572

RESUMO

Electronic tags that archive or transmit stored data to satellites have advanced the mapping of habitats used by highly migratory fish in pelagic ecosystems. Here we report on the electronic tagging of 772 Atlantic bluefin tuna in the western Atlantic Ocean in an effort to identify population structure. Reporting electronic tags provided accurate location data that show the extensive migrations of individual fish (n = 330). Geoposition data delineate two populations, one using spawning grounds in the Gulf of Mexico and another from the Mediterranean Sea. Transatlantic movements of western-tagged bluefin tuna reveal site fidelity to known spawning areas in the Mediterranean Sea. Bluefin tuna that occupy western spawning grounds move to central and eastern Atlantic foraging grounds. Our results are consistent with two populations of bluefin tuna with distinct spawning areas that overlap on North Atlantic foraging grounds. Electronic tagging locations, when combined with US pelagic longline observer and logbook catch data, identify hot spots for spawning bluefin tuna in the northern slope waters of the Gulf of Mexico. Restrictions on the time and area where longlining occurs would reduce incidental catch mortalities on western spawning grounds.


Assuntos
Sistemas de Identificação Animal/métodos , Migração Animal , Eletrônica , Atum/fisiologia , Sistemas de Identificação Animal/instrumentação , Animais , Oceano Atlântico , Meio Ambiente , Comportamento Alimentar/fisiologia , Mar Mediterrâneo , México , Dinâmica Populacional , Reprodução/fisiologia , Água do Mar , Temperatura , Fatores de Tempo
16.
Nature ; 415(6867): 35-6, 2002 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-11780105

RESUMO

Until the advent of electronic tagging technology, the inherent difficulty of studying swift and powerful marine animals made ecological information about sharks of the family Lamnidae difficult to obtain. Here we report the tracking of movements of white sharks by using pop-up satellite archival tags, which reveal that their migratory movements, depth and ambient thermal ranges are wider than was previously thought.


Assuntos
Migração Animal , Tubarões/fisiologia , Animais , California , Mergulho , Meio Ambiente , Havaí , Biologia Marinha/métodos , Oceano Pacífico , Natação , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA