Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
2.
Eur J Obstet Gynecol Reprod Biol ; 297: 187-196, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677096

RESUMO

OBJECTIVE: Patients with superficial peritoneal endometriosis (SPE) present with symptoms suggestive of endometriosis but clinical and imaging exams are inconclusive. Consequently, laparoscopy is usually necessary to confirm diagnosis. The present study aimed to evaluate the accuracy of microRNAs (miRNAs) to diagnose patients with SPE from the ENDOmiARN cohort STUDY DESIGN: This prospective study (NCT04728152) included 200 saliva samples obtained between January and June 2021 from women with pelvic pain suggestive of endometriosis. All patients underwent either laparoscopy and/or MRI to confirm the presence of endometriosis. Among the patients with endometriosis, two groups were defined: an SPE phenotype group of patients with peritoneal lesions only, and a non-SPE control group of patients with other endometriosis phenotypes (endometrioma and/or deep endometriosis). Data analysis consisted of two parts: (i) identification of a set of miRNA biomarkers using next-generation sequencing (NGS), and (ii) development of a saliva-based miRNA signature for the SPE phenotype in patients with endometriosis based on a Random Forest (RF) model. RESULTS: Among the 153 patients with confirmed endometriosis, 10.5 % (n = 16) had an SPE phenotype. Of the 2633 known miRNAs, the feature selection method generated a signature of 89 miRNAs of the SPE phenotype. After validation, the best model, representing the most accurate signature had a 100 % sensitivity, specificity, and AUC. CONCLUSION: This signature could constitute a new diagnostic strategy to detect the SPE phenotype based on a simple biological test and render diagnostic laparoscopy obsolete. PRéCIS: We generated a saliva-based signature to identify patients with superficial peritoneal endometriosis which is the most challenging form of endometriosis to diagnose and which is often either misdiagnosed or requires invasive laparoscopy.


Assuntos
Endometriose , MicroRNAs , Fenótipo , Saliva , Humanos , Feminino , Endometriose/diagnóstico , Endometriose/genética , Adulto , MicroRNAs/metabolismo , MicroRNAs/análise , MicroRNAs/genética , Saliva/química , Estudos Prospectivos , Doenças Peritoneais/diagnóstico , Doenças Peritoneais/genética , Doenças Peritoneais/metabolismo , Biomarcadores/metabolismo , Biomarcadores/análise , Sensibilidade e Especificidade
3.
Eur J Obstet Gynecol Reprod Biol ; 291: 88-95, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857147

RESUMO

OBJECTIVES: In contrast to miRNA expression, little attention has been given to piwiRNA (piRNA) expression among endometriosis patients. The aim of the present study was to explore the human piRNAome and to investigate a potential piRNA saliva-based diagnostic signature for endometriosis. METHODS: Data from the prospective "ENDOmiRNA" study (ClinicalTrials.gov Identifier: NCT04728152) were used. Saliva samples from 200 patients were analyzed in order to evaluate human piRNA expression using the piRNA bank. Next Generation Sequencing (NGS), barcoding of unique molecular identifiers and both Artificial Intelligence (AI) and machine learning (ML) were used. For each piRNA, sensitivity, specificity, and ROC AUC values were calculated for the diagnosis of endometriosis. RESULTS: 201 piRNAs were identified, none had an AUC ≥ 0.70, and only three piRNAs (piR-004153, piR001918, piR-020401) had an AUC between ≥ 0.6 and < 0.70. Seven were differentially expressed: piR-004153, piR-001918, piR-020401, piR-012864, piR-017716, piR-020326 and piR-016904. The respective correlation and accuracy to diagnose endometriosis according to the F1-score, sensitivity, specificity, and AUC ranged from 0 to 0.862 %, 0-0.961 %, 0.085-1, and 0.425-0.618. A correlation was observed between the patients' age (≥35 years) and piR-004153 (p = 0.002) and piR-017716 (p = 0.030). Among the 201 piRNAs, four were differentially expressed in patients with and without hormonal treatment: piR-004153 (p = 0.015), piR-020401 (p = 0.001), piR-012864 (p = 0.036) and piR-017716 (p = 0.009). CONCLUSION: Our results support the link between piRNAs and endometriosis physiopathology and establish its utility as a potential diagnostic biomarker using saliva samples. Per se, piRNA expression should be analyzed along with the clinical status of a patient.


Assuntos
Endometriose , RNA de Interação com Piwi , Feminino , Humanos , Adulto , RNA Interferente Pequeno/genética , Endometriose/diagnóstico , Endometriose/genética , Inteligência Artificial , Estudos Prospectivos , Biomarcadores
5.
Front Cell Neurosci ; 17: 1155929, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138765

RESUMO

The GGGGCC intronic repeat expansion within C9ORF72 is the most common genetic cause of ALS and FTD. This mutation results in toxic gain of function through accumulation of expanded RNA foci and aggregation of abnormally translated dipeptide repeat proteins, as well as loss of function due to impaired transcription of C9ORF72. A number of in vivo and in vitro models of gain and loss of function effects have suggested that both mechanisms synergize to cause the disease. However, the contribution of the loss of function mechanism remains poorly understood. We have generated C9ORF72 knockdown mice to mimic C9-FTD/ALS patients haploinsufficiency and investigate the role of this loss of function in the pathogenesis. We found that decreasing C9ORF72 leads to anomalies of the autophagy/lysosomal pathway, cytoplasmic accumulation of TDP-43 and decreased synaptic density in the cortex. Knockdown mice also developed FTD-like behavioral deficits and mild motor phenotypes at a later stage. These findings show that C9ORF72 partial loss of function contributes to the damaging events leading to C9-FTD/ALS.

6.
Reprod Biomed Online ; 46(1): 138-149, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36411203

RESUMO

RESEARCH QUESTION: Can a saliva-based miRNA signature for endometriosis-associated infertility be designed and validated by analysing the human miRNome? DESIGN: The prospective ENDOmiARN study (NCT04728152) included 200 saliva samples obtained between January 2021 and June 2021 from women with pelvic pain suggestive of endometriosis. All patients underwent either laparoscopy, magnetic resonance imaging, or both. Patients diagnosed with endometriosis were allocated to one of two groups according to their fertility status. Data analysis consisted of identifying a set of miRNA biomarkers using next-generation sequencing, and development of a saliva-based miRNA signature of infertility among patients with endometriosis based on a random forest model. RESULTS: Among the 153 patients diagnosed with endometriosis, 24% (n = 36) were infertile and 76% (n = 117) were fertile. Small RNA-sequencing of the 153 saliva samples yielded approximately 3712 M raw sequencing reads (from ∼13.7 M to ∼39.3 M reads/sample). Of the 2561 known miRNAs, the feature selection method generated a signature of 34 miRNAs linked to endometriosis-associated infertility. After validation, the most accurate signature model had a sensitivity, specificity and area under the curve of 100%. CONCLUSION: A saliva-based miRNA signature for endometriosis-associated infertility is reported. Although the results still require external validation before using the signature in routine practice, this non-invasive tool is likely to have a major effect on care provided to women with endometriosis.


Assuntos
Endometriose , Infertilidade Feminina , Infertilidade , MicroRNAs , Feminino , Humanos , Endometriose/complicações , Endometriose/diagnóstico , Endometriose/genética , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , MicroRNAs/genética , Estudos Prospectivos , Saliva
7.
NEJM Evid ; 2(7): EVIDoa2200282, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38320163

RESUMO

Salivary miRNA Signature of EndometriosisThis interim analysis of the prospective, multicenter, external validation ENDOmiRNA Saliva Test study, confirms the diagnostic performance and reproducibility of the saliva miRNA signature for endometriosis. At a population prevalence of ∼80%, the miRNA signature had a sensitivity of 96.2%, specificity of 95.1%, and area under the curve of 0.96.


Assuntos
Endometriose , MicroRNAs , Feminino , Humanos , MicroRNAs/genética , Endometriose/diagnóstico , Estudos Prospectivos , Reprodutibilidade dos Testes , Biomarcadores Tumorais/genética
8.
Blood ; 140(23): 2500-2513, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-35984904

RESUMO

Administration of azithromycin after allogeneic hematopoietic stem cell transplantation for hematologic malignancies has been associated with relapse in a randomized phase 3 controlled clinical trial. Studying 240 samples from patients randomized in this trial is a unique opportunity to better understand the mechanisms underlying relapse, the first cause of mortality after transplantation. We used multi-omics on patients' samples to decipher immune alterations associated with azithromycin intake and post-transplantation relapsed malignancies. Azithromycin was associated with a network of altered energy metabolism pathways and immune subsets, including T cells biased toward immunomodulatory and exhausted profiles. In vitro, azithromycin exposure inhibited T-cell cytotoxicity against tumor cells and impaired T-cell metabolism through glycolysis inhibition, down-regulation of mitochondrial genes, and up-regulation of immunomodulatory genes, notably SOCS1. These results highlight that azithromycin directly affects immune cells that favor relapse, which raises caution about long-term use of azithromycin treatment in patients at high risk of malignancies. The ALLOZITHRO trial was registered at www.clinicaltrials.gov as #NCT01959100.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias , Humanos , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Redes e Vias Metabólicas , Transplante de Células-Tronco
9.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887388

RESUMO

Endometriosis, defined by the presence of endometrium-like tissue outside the uterus, affects 2-10% of the female population, i.e., around 190 million women, worldwide. The aim of the prospective ENDO-miRNA study was to develop a bioinformatics approach for microRNA-sequencing analysis of 200 saliva samples for miRNAome expression and to test its diagnostic accuracy for endometriosis. Among the 200 patients, 76.5% (n = 153) had confirmed endometriosis and 23.5% (n = 47) had no endometriosis (controls). Small RNA-seq of 200 saliva samples yielded ~4642 M raw sequencing reads (from ~13.7 M to ~39.3 M reads/sample). The number of expressed miRNAs ranged from 1250 (outlier) to 2561 per sample. Some 2561 miRNAs were found to be differentially expressed in the saliva samples of patients with endometriosis compared with the control patients. Among these, 1.17% (n = 30) were up- or downregulated. Among these, the F1-score, sensitivity, specificity, and AUC ranged from 11-86.8%, 5.8-97.4%, 10.6-100%, and 39.3-69.2%, respectively. Here, we report a bioinformatic approach to saliva miRNA sequencing and analysis. We underline the advantages of using saliva over blood in terms of ease of collection, reproducibility, stability, safety, non-invasiveness. This report describes the whole saliva transcriptome to make miRNA quantification a validated, standardized, and reliable technique for routine use. The methodology could be applied to build a saliva signature of endometriosis.


Assuntos
Endometriose , MicroRNAs , Biologia Computacional , Endometriose/diagnóstico , Endometriose/genética , Endometriose/metabolismo , Endométrio/metabolismo , Feminino , Humanos , MicroRNAs/metabolismo , Estudos Prospectivos , Reprodutibilidade dos Testes , Saliva/metabolismo
10.
Diagnostics (Basel) ; 12(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35626305

RESUMO

The aim of our study was to describe the bioinformatics approach to analyze miRNome with Next Generation Sequencing (NGS) of 200 plasma samples from patients with and without endometriosis. Patients were prospectively included in the ENDO-miRNA study that selected patients with pelvic pain suggestive of endometriosis. miRNA sequencing was performed using an Novaseq6000 sequencer (Illumina, San Diego, CA, USA). Small RNA-seq of 200 plasma samples yielded ~4228 M raw sequencing reads. A total of 2633 miRNAs were found differentially expressed. Among them, 8.6% (n = 229) were up- or downregulated. For these 229 miRNAs, the F1-score, sensitivity, specificity, and AUC ranged from 0-88.2%, 0-99.4%, 4.3-100%, and 41.5-68%, respectively. Utilizing the combined bioinformatic and NGS approach, a specific and broad panel of miRNAs was detected as being potentially suitable for building a blood signature of endometriosis.

11.
Sci Rep ; 12(1): 4051, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260677

RESUMO

Endometriosis, characterized by endometrial-like tissue outside the uterus, is thought to affect 2-10% of women of reproductive age: representing about 190 million women worldwide. Numerous studies have evaluated the diagnostic value of blood biomarkers but with disappointing results. Thus, the gold standard for diagnosing endometriosis remains laparoscopy. We performed a prospective trial, the ENDO-miRNA study, using both Artificial Intelligence (AI) and Machine Learning (ML), to analyze the current human miRNome to differentiate between patients with and without endometriosis, and to develop a blood-based microRNA (miRNA) diagnostic signature for endometriosis. Here, we present the first blood-based diagnostic signature obtained from a combination of two robust and disruptive technologies merging the intrinsic quality of miRNAs to condense the endometriosis phenotype (and its heterogeneity) with the modeling power of AI. The most accurate signature provides a sensitivity, specificity, and Area Under the Curve (AUC) of 96.8%, 100%, and 98.4%, respectively, and is sufficiently robust and reproducible to replace the gold standard of diagnostic surgery. Such a diagnostic approach for this debilitating disorder could impact recommendations from national and international learned societies.


Assuntos
Endometriose , MicroRNAs , Inteligência Artificial , Biomarcadores , Endometriose/genética , Endométrio , Feminino , Humanos , Estudos Prospectivos
12.
J Clin Med ; 11(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35160066

RESUMO

BACKGROUND: Endometriosis diagnosis constitutes a considerable economic burden for the healthcare system with diagnostic tools often inconclusive with insufficient accuracy. We sought to analyze the human miRNAome to define a saliva-based diagnostic miRNA signature for endometriosis. METHODS: We performed a prospective ENDO-miRNA study involving 200 saliva samples obtained from 200 women with chronic pelvic pain suggestive of endometriosis collected between January and June 2021. The study consisted of two parts: (i) identification of a biomarker based on genome-wide miRNA expression profiling by small RNA sequencing using next-generation sequencing (NGS) and (ii) development of a saliva-based miRNA diagnostic signature according to expression and accuracy profiling using a Random Forest algorithm. RESULTS: Among the 200 patients, 76.5% (n = 153) were diagnosed with endometriosis and 23.5% (n = 47) without (controls). Small RNA-seq of 200 saliva samples yielded ~4642 M raw sequencing reads (from ~13.7 M to ~39.3 M reads/sample). Quantification of the filtered reads and identification of known miRNAs yielded ~190 M sequences that were mapped to 2561 known miRNAs. Of the 2561 known miRNAs, the feature selection with Random Forest algorithm generated after internally cross validation a saliva signature of endometriosis composed of 109 miRNAs. The respective sensitivity, specificity, and AUC for the diagnostic miRNA signature were 96.7%, 100%, and 98.3%. CONCLUSIONS: The ENDO-miRNA study is the first prospective study to report a saliva-based diagnostic miRNA signature for endometriosis. This could contribute to improving early diagnosis by means of a non-invasive tool easily available in any healthcare system.

13.
Diagnostics (Basel) ; 12(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35054341

RESUMO

The pathophysiology of endometriosis remains poorly understood. The aim of the present study was to investigate functions and pathways associated with the various miRNAs differentially expressed in patients with endometriosis. Plasma samples of the 200 patients from the prospective "ENDO-miRNA" study were analyzed and all known human miRNAs were sequenced. For each miRNA, sensitivity, specificity, and ROC AUC values were calculated for the diagnosis of endometriosis. miRNAs with an AUC ≥ 0.6 were selected for further analysis. A comprehensive review of recent articles from the PubMed, Clinical Trials.gov, Cochrane Library, and Web of Science databases was performed to identify functions and pathways associated with the selected miRNAs. In total, 2633 miRNAs were found in the patients with endometriosis. Among the 57 miRNAs with an AUC ≥ 0.6: 20 had never been reported before; one (miR-124-3p) had previously been observed in endometriosis; and the remaining 36 had been reported in benign and malignant disorders. miR-124-3p is involved in ectopic endometrial cell proliferation and invasion and plays a role in the following pathways: mTOR, STAT3, PI3K/Akt, NF-κB, ERK, PLGF-ROS, FGF2-FGFR, MAPK, GSK3B/ß-catenin. Most of the remaining 36 miRNAs are involved in carcinogenesis through cell proliferation, apoptosis, and invasion. The three main pathways involved are Wnt/ß-catenin, PI3K/Akt, and NF-KB. Our results provide evidence of the relation between the miRNA profiles of patients with endometriosis and various signaling pathways implicated in its pathophysiology.

14.
Eur J Paediatr Neurol ; 33: 121-124, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34174751

RESUMO

BACKGROUND: Variants in SCN1A gene, encoding the voltage-gated sodium channel Nav1.1, are associated with distinct epilepsy syndromes ranging from the relatively benign genetic epilepsy with febrile seizures plus (GEFS+) to Dravet syndrome, a severe developmental and epileptic encephalopathy (DEE). Most SCN1A pathogenic variants are heterozygous changes inherited in a dominant or de novo inheritance and many cause a loss-of-function of one allele. To date, recessive inheritance has been suggested in only two families with affected children harboring homozygous SCN1A missense variants while their heterozygous parents were asymptomatic. The aim of this report is to describe two additional families in which affected individuals have biallelic SCN1A variants possibly explaining their phenotype. METHODS AND RESULTS: We report two novel homozygous SCN1A missense variants in two patients from related parents. Both patients had fever-sensitive epilepsy beginning in the first months of life, followed by afebrile seizures, without severe cognitive impairment. Parents were asymptomatic. Next generation sequencing excluded a pathogenic variant in other genes involved in DEE. Estimation of pathogenicity scores by in-silico tools suggests that the impact of these SCN1A variants is less damaging than that of dominant pathogenic variants. CONCLUSION: This study provides additional evidence that homozygous variants in SCN1A can cause GEFS+. This recessive inheritance would imply that hypomorphic variants may not necessarily cause epilepsy at the heterozygous state but may decrease the seizure threshold when combined.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsias Mioclônicas/genética , Síndromes Epilépticas , Humanos , Mutação , Fenótipo , Convulsões Febris/genética
15.
Nat Cell Biol ; 23(5): 538-551, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33972731

RESUMO

COVID-19 can lead to life-threatening respiratory failure, with increased inflammatory mediators and viral load. Here, we perform single-cell RNA-sequencing to establish a high-resolution map of blood antigen-presenting cells (APCs) in 15 patients with moderate or severe COVID-19 pneumonia, at day 1 and day 4 post admission to intensive care unit or pulmonology department, as well as in 4 healthy donors. We generated a unique dataset of 81,643 APCs, including monocytes and rare dendritic cell (DC) subsets. We uncovered multi-process defects in antiviral immune defence in specific APCs from patients with severe disease: (1) increased pro-apoptotic pathways in plasmacytoid DCs (pDCs, key effectors of antiviral immunity), (2) a decrease of the innate sensors TLR9 and DHX36 in pDCs and CLEC9a+ DCs, respectively, (3) downregulation of antiviral interferon-stimulated genes in monocyte subsets and (4) a decrease of major histocompatibility complex (MHC) class II-related genes and MHC class II transactivator activity in cDC1c+ DCs, suggesting viral inhibition of antigen presentation. These novel mechanisms may explain patient aggravation and suggest strategies to restore the defective immune defence.


Assuntos
Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Antígenos Virais/imunologia , Antivirais/imunologia , COVID-19/sangue , COVID-19/imunologia , Células Dendríticas/imunologia , Humanos , Monócitos/imunologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
16.
Artigo em Inglês | MEDLINE | ID: mdl-31824749

RESUMO

Background: Genes involved in Tourette syndrome (TS) remain largely unknown. We aimed to identify genetic factors contributing to TS in a French cohort of 120 individuals using a combination of hypothesis-driven and exome-sequencing approaches. Methods: We first sequenced exons of SLITRK1-6 and HDC in the TS cohort and subsequently sequenced the exome of 12 individuals harboring rare variants in these genes to find additional rare variants contributing to the disorder under the hypothesis of oligogenic inheritance. We further screened three candidate genes (OPRK1, PCDH10, and NTSR2) preferentially expressed in the basal ganglia, and three additional genes involved in neurotensin and opioid signaling (OPRM1, NTS, and NTSR1), and compared variant frequencies in TS patients and 788 matched control individuals. We also investigated the impact of altering the expression of Oprk1 in zebrafish. Results: Thirteen ultrarare missense variants of SLITRK1-6 and HDC were identified in 12 patients. Exome sequencing in these patients revealed rare possibly deleterious variants in 3,041 genes, 54 of which were preferentially expressed in the basal ganglia. Comparison of variant frequencies altering selected candidate genes in TS and control individuals revealed an excess of potentially disrupting variants in OPRK1, encoding the opioid kappa receptor, in TS patients. Accordingly, we show that downregulation of the Oprk1 orthologue in zebrafish induces a hyperkinetic phenotype in early development. Discussion: These results support a heterogeneous and complex genetic etiology of TS, possibly involving rare variants altering the opioid pathway in some individuals, which could represent a novel therapeutic target in this disorder.


Assuntos
Estudos de Associação Genética/métodos , Variação Genética/genética , Mutação de Sentido Incorreto/genética , Receptores Opioides/genética , Síndrome de Tourette/diagnóstico , Síndrome de Tourette/genética , Animais , Estudos de Coortes , Feminino , Humanos , Masculino , Peixe-Zebra
17.
Nat Commun ; 10(1): 4919, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664039

RESUMO

Familial Adult Myoclonic Epilepsy (FAME) is a genetically heterogeneous disorder characterized by cortical tremor and seizures. Intronic TTTTA/TTTCA repeat expansions in SAMD12 (FAME1) are the main cause of FAME in Asia. Using genome sequencing and repeat-primed PCR, we identify another site of this repeat expansion, in MARCH6 (FAME3) in four European families. Analysis of single DNA molecules with nanopore sequencing and molecular combing show that expansions range from 3.3 to 14 kb on average. However, we observe considerable variability in expansion length and structure, supporting the existence of multiple expansion configurations in blood cells and fibroblasts of the same individual. Moreover, the largest expansions are associated with micro-rearrangements occurring near the expansion in 20% of cells. This study provides further evidence that FAME is caused by intronic TTTTA/TTTCA expansions in distinct genes and reveals that expansions exhibit an unexpectedly high somatic instability that can ultimately result in genomic rearrangements.


Assuntos
Expansão das Repetições de DNA , Epilepsias Mioclônicas/genética , Proteínas de Membrana/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Adulto , Idoso , Mapeamento Cromossômico , Feminino , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
18.
Epileptic Disord ; 21(4): 359-365, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31368437

RESUMO

Unverricht-Lundborg disease (ULD), an autosomal recessive progressive myoclonus epilepsy, is due to an expansion, or less commonly a mutation, of the cystatin B (CSTB) gene. We report a clinical and molecular study of a Tunisian ULD family with five affected members presenting with a juvenile myoclonic epilepsy (JME)-like phenotype. The expansion of dodecamers was detected by a deamination/PCR assay. The expression profiles of CSTB and other candidate modifying genes, cathepsin B and cystatin C, were established by quantitative RT-PCR, and their respective transcription levels were compared with those from patients with a classic picture of ULD. Three patients had a fixed phenotype mimicking JME after 29 years of evolution. Only a discrete dysarthria was noticed in the two other patients. No correlation was observed between transcription level and severity of disease. Genetic screening should be performed in patients with a JME-like phenotype, when careful examination reveals discrete atypical signs of JME. This particular phenotype may be due to modifying genes and/or gene-environment interactions which require further clarification.


Assuntos
Mutação/genética , Epilepsias Mioclônicas Progressivas/genética , Epilepsia Mioclônica Juvenil/genética , Síndrome de Unverricht-Lundborg/genética , Adolescente , Adulto , Feminino , Testes Genéticos/métodos , Humanos , Masculino , Fenótipo
19.
Appl Plant Sci ; 6(12): e01201, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30598859

RESUMO

PREMISE OF THE STUDY: Simple sequence repeat (SSR) or microsatellite markers have been used in a broad range of studies mostly scoring alleles on the basis of amplicon size as a proxy for the number of repeat units of an SSR motif. However, additional sources of variation within the SSR or in the flanking regions have largely remained undetected. METHODS: In this study, we implemented a next-generation sequencing-based genotyping approach in a newly characterized set of 18 nuclear SSR markers for the carob tree, Ceratonia siliqua. Our aim was to evaluate the effect of three different methods of scoring molecular variation present within microsatellite markers on the genetic diversity and structure results. RESULTS: The analysis of the sequences of 77 multilocus genotypes from four populations revealed SSR variation and additional sources of polymorphism in 87% of the loci analyzed (42 single-nucleotide polymorphisms and five insertion/deletion polymorphisms), as well as divergent paralog copies in two loci. Ignoring sequence variation under standard amplicon size genotyping resulted in incorrect identification of 69% of the alleles, with important effects on the genetic diversity and structure estimates. DISCUSSION: Next-generation sequencing allows the detection and scoring of SSRs, single-nucleotide polymorphisms, and insertion/deletion polymorphisms to increase the resolution of population genetic studies.

20.
Amino Acids ; 47(12): 2647-58, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26215737

RESUMO

Cationic amino acid transporters (CATs) mediate the entry of L-type cationic amino acids (arginine, ornithine and lysine) into the cells including neurons. CAT-3, encoded by the SLC7A3 gene on chromosome X, is one of the three CATs present in the human genome, with selective expression in brain. SLC7A3 is highly intolerant to variation in humans, as attested by the low frequency of deleterious variants in available databases, but the impact on variants in this gene in humans remains undefined. In this study, we identified a missense variant in SLC7A3, encoding the CAT-3 cationic amino acid transporter, on chromosome X by exome sequencing in two brothers with autism spectrum disorder (ASD). We then sequenced the SLC7A3 coding sequence in 148 male patients with ASD and identified three additional rare missense variants in unrelated patients. Functional analyses of the mutant transporters showed that two of the four identified variants cause severe or moderate loss of CAT-3 function due to altered protein stability or abnormal trafficking to the plasma membrane. The patient with the most deleterious SLC7A3 variant had high-functioning autism and epilepsy, and also carries a de novo 16p11.2 duplication possibly contributing to his phenotype. This study shows that rare hypomorphic variants of SLC7A3 exist in male individuals and suggest that SLC7A3 variants possibly contribute to the etiology of ASD in male subjects in association with other genetic factors.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/genética , Transtorno do Espectro Autista/genética , Sequência de Aminoácidos , Animais , Biotinilação , Encéfalo/metabolismo , Membrana Celular/metabolismo , Criança , Cromossomos Humanos X/genética , Epilepsia/complicações , Epilepsia/genética , Frequência do Gene , Humanos , Perda de Heterozigosidade , Masculino , Conformação Molecular , Dados de Sequência Molecular , Mutação , Mutação de Sentido Incorreto , Oócitos/metabolismo , Linhagem , Fenótipo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA