Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(36): 16655-16666, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39189684

RESUMO

The novel quaternary compound Rb0.2Ba0.4Cr5Se8 was synthesized and characterized in both single crystal and polycrystalline forms. Crystallizing in the monoclinic crystal system (space group C2/m, cell parameters a = 18.7071(4) Å, b = 3.6030(1) Å, c = 8.9637(3) Å, ß = 104.494(2)°) and isostructural to pseudo-hollandite compounds, it features mixed Rb and Ba occupancy within its one-dimensional channels. High-temperature X-ray diffraction revealed no decomposition up to 973 K, and the thermal expansion coefficient at 300 K was determined to be 2.6(1)·10-5 K-1. Spin-polarized density functional theory (DFT) calculations showed that the density of states for Rb0.2Ba0.4Cr5Se8 is more polarized than that of Ba0.5Cr5Se8, resulting in a higher Seebeck coefficient, which was experimentally confirmed to reach a peak value of 400 µV·K-1 at 620 K. Resistivity measurements indicated a degenerate semiconducting behavior below 550 K, with a resistivity peak of 100 mΩ·cm at that temperature, leading to a maximum power factor of 0.21 mW·m-1·K-2. Thermal conductivity measurements indicated low values around 0.8 W·m-1·K-1 in the 300-900 K range, resulting in a thermoelectric figure of merit of 0.22 at 873 K. Decorrelated transport properties observed in this double-inserted pseudo-hollandite compound make Rb0.2Ba0.4Cr5Se8 a good example of beneficial synergistic effects for higher thermoelectric performance.

2.
Inorg Chem ; 62(41): 16905-16912, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37782294

RESUMO

This article presents a comprehensive study on the synthesis and structural and thermal conductivity properties of cesium-inserted chromium tellurides of formula CsxCr5Te8. Single crystals of three different compositions (x = 0.73, 0.91, and 0.97) were successfully synthesized and suggested the existence of a solid solution in the range 0.73 < x < 1. Through a detailed single-crystal characterization, the complete structure of these compounds is determined, revealing a distinct B-type hollandite-like structural form derived from the hollandite structure, in contrast to the more commonly observed A-type pseudo-hollandite in AM5X8-type chalcogenides (A = cation, M = transition metal, and X = chalcogen). Periodic density functional theory calculations predict the Cs0.73Cr5Te8 composition as the most stable, with a metallic conductive behavior. The thermal conductivity of bulk CsxCr5Te8 samples is measured to be 1.4 W m-1 K-1 at 300 K and increases with temperature up to 2 W m-1 K-1 at 673 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA