Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucl Med Biol ; 138-139: 108942, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39151306

RESUMO

BACKGROUND: [18F]F13640 is a new PET radiopharmaceutical for brain molecular imaging of serotonin 5-HT1A receptors. Since we intend to use this radiopharmaceutical in psychiatric studies, it is crucial to establish possible sensitivity modification of 5-HT1A receptors availability during an acute stress exposure. In this study, we first assessed the cerebrometabolic effects of a new animal model of stress with [18F]FDG and then proceeded to test for effects of this model on the cerebral binding of [18F]F13640, a 5-HT1A receptors PET radiopharmaceutical. METHODS: Four groups of male Sprague-Dawley were used to identify the optimal model: "stressed group" (n = 10), "post-traumatic stress disorder (PTSD) group" (n = 9) and "restraint group" (n = 8), compared with a control group (n = 8). All rats performed neuroimaging [18F]FDG µPET-CT to decipher which model was the most appropriate to test effects of stress on radiotracer binding. Subsequently, a group of rats (n = 10) underwent two PET imaging acquisitions (baseline and PTSD condition) using the PET radiopharmaceutical [18F]F13640 to assess influence of stress on its binding. Voxel-based analysis was performed to assess [18F]FDG or [18F]F13640 changes. RESULTS: In [18F]FDG experiments, the PTSD group showed a pattern of cerebrometabolic activation in various brain regions previously implicated in stress (amygdala, perirhinal cortex, olfactory bulb and caudate). [18F]F13640 PET scans showed increased radiotracer binding in the PTSD condition in caudate nucleus and brainstem. CONCLUSIONS: The present study demonstrated stress-induced cerebrometabolic activation or inhibition of various brain regions involved in stress model. Applying this model to our radiotracer, [18F]F13640 showed few influence of stress on its binding. This will enable to rule out any confounding effect of stress during imaging studies.

2.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38186005

RESUMO

Neuronal inhibition, primarily mediated by GABAergic neurotransmission, is crucial for brain development and healthy cognition. Gamma-aminobutyric acid concentration levels in sensory areas have been shown to correlate with hemodynamic and oscillatory neuronal responses. How these measures relate to one another during working memory, a higher-order cognitive process, is still poorly understood. We address this gap by collecting magnetoencephalography, functional magnetic resonance imaging, and Flumazenil positron emission tomography data within the same subject cohort using an n-back working-memory paradigm. By probing the relationship between GABAA receptor distribution, neural oscillations, and Blood Oxygen Level Dependent (BOLD) modulations, we found that GABAA receptor density in higher-order cortical areas predicted the reaction times on the working-memory task and correlated positively with the peak frequency of gamma power modulations and negatively with BOLD amplitude. These findings support and extend theories linking gamma oscillations and hemodynamic responses to gamma-aminobutyric acid neurotransmission and to the excitation-inhibition balance and cognitive performance in humans. Considering the small sample size of the study, future studies should test whether these findings also hold for other, larger cohorts as well as to examine in detail how the GABAergic system and neural fluctuations jointly support working-memory task performance.


Assuntos
Memória de Curto Prazo , Receptores de GABA-A , Humanos , Memória de Curto Prazo/fisiologia , Magnetoencefalografia/métodos , Imageamento por Ressonância Magnética , Ácido gama-Aminobutírico , Encéfalo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA