Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(3): e2303317, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38018294

RESUMO

Vitrification-based cryopreservation is a promising approach to achieving long-term storage of biological systems for maintaining biodiversity, healthcare, and sustainable food production. Using the "cryomesh" system achieves rapid cooling and rewarming of biomaterials, but further improvement in cooling rates is needed to increase biosystem viability and the ability to cryopreserve new biosystems. Improved cooling rates and viability are possible by enabling conductive cooling through cryomesh. Conduction-dominated cryomesh improves cooling rates from twofold to tenfold (i.e., 0.24 to 1.2 × 105  °C min-1 ) in a variety of biosystems. Higher thermal conductivity, smaller mesh wire diameter and pore size, and minimizing the nitrogen vapor barrier (e.g., vertical plunging in liquid nitrogen) are key parameters to achieving improved vitrification. Conduction-dominated cryomesh successfully vitrifies coral larvae, Drosophila embryos, and zebrafish embryos with improved outcomes. Not only a theoretical foundation for improved vitrification in µm to mm biosystems but also the capability to scale up for biorepositories and/or agricultural, aquaculture, or scientific use are demonstrated.


Assuntos
Vitrificação , Peixe-Zebra , Animais , Criopreservação , Temperatura Baixa , Nitrogênio
2.
PeerJ ; 11: e15723, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576514

RESUMO

Anthropogenic stressors threaten reefs worldwide and natural in situ coral reproduction may be inadequate to meet this challenge. Land-based culture can provide increased coral growth, especially with microfragments. We tested whether culture methods using different algal fouling communities could improve the growth and health metrics of microfragments of the Hawaiian coral, Porites compressa. Culture method fouling communities were: (1) similar to a reef environment (Mini Reef); (2) clean tanks managed to promote crustose coralline algae (Clean Start); and (3) tanks curated beforehand with poorly-competing algae (Green Film) assessed in winter and summer months. The Green Film method during the winter produced the fastest microfragment mean growth at 28 days until the first row of new polyps developed, and also the highest tank and plate metric health scores. Time efficient, standardized methods for land-based culture designed to maximize growth and production of coral fragments will contribute considerably to the success of large-scale restoration efforts.


Assuntos
Antozoários , Animais , Recifes de Corais , Havaí , Estações do Ano
3.
Sci Rep ; 13(1): 246, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604569

RESUMO

Coral reefs worldwide are at risk due to climate change. Coral bleaching is becoming increasingly common and corals that survive bleaching events can suffer from temporary reproductive failure for several years. While water temperature is a key driver in causing coral bleaching, other environmental factors are involved, such as solar radiation. We investigated the individual and combined effects of temperature, photosynthetically active radiation (PAR), and ultraviolet radiation (UVR) on the spawning patterns and reproductive physiology of the Hawaiian mushroom coral Lobactis scutaria, using long-term experiments in aquaria. We examined effects on spawning timing, fertilisation success, and gamete physiology. Both warmer temperatures and filtering UVR altered the timing of spawning. Warmer temperatures caused a drop in fertilisation success. Warmer temperatures and higher PAR both negatively affected sperm and egg physiology. These results are concerning for the mushroom coral L. scutaria and similar reproductive data are urgently needed to predict future reproductive trends in other species. Nonetheless, thermal stress from global climate change will need to be adequately addressed to ensure the survival of reef-building corals in their natural environment throughout the next century and beyond. Until then, reproduction is likely to be increasingly impaired in a growing number of coral species.


Assuntos
Antozoários , Temperatura , Raios Ultravioleta , Animais , Antozoários/fisiologia , Biologia , Mudança Climática , Recifes de Corais , Sementes , Reprodução
4.
Sci Rep ; 12(1): 12255, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851072

RESUMO

Sessile invertebrates often engage in synchronized spawning events to increase likelihood of fertilization. Although coral reefs are well studied, the reproductive behavior of most species and the relative influence of various environmental cues that drive reproduction are not well understood. We conducted a comparative examination of the reproduction of the well-studied Hawaiian coral Montipora capitata and the relatively unknown reproduction of its congener, Montipora flabellata. Both are simultaneous hermaphroditic broadcast spawners that release egg-sperm bundles with external fertilization. Montipora capitata had a distinct reproductive pattern that resulted in coordinated gamete maturation and the synchronized release of thousands of egg-sperm bundles across two spawning pulses tightly coupled to consecutive new moon phases in June and July. Montipora flabellata exhibited a four month reproductive season with spawning that was four-fold less synchronous than M. capitata; its spawning was aperiodic with little linkage to moon phase, a broadly distributed release of only dozens or hundreds of bundles over multiple nights, and a spawning period that ranged from late June through September. The reproductive strategy of M. flabellata might prove detrimental under climate change if increased frequency and severity of bleaching events leave it sparsely populated and local stressors continue to degrade its habitat.


Assuntos
Antozoários , Animais , Recifes de Corais , Havaí , Masculino , Reprodução , Sêmen
5.
PeerJ ; 10: e13112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345587

RESUMO

The drastic decline in coral coverage has stimulated an interest in reef restoration, and various iterations of coral nurseries have been used to augment restoration strategies. Here we examine the growth of two species of Hawaiian Montipora that were maintained in mesocosms under either ambient or warmed annual bleaching conditions for two consecutive years prior to outplanting to determine whether preconditioning aided coral restoration efforts. Using coral trees to create a nearby ocean nursery, we examined whether: (1) previous ex situ mesocosm growth would mirror in situ coral tree nursery growth; and (2) thermal ex situ stress-hardening would predict future success during natural warming events in situ for corals moved from tanks to trees. For Montipora capitata, we found that variation in growth was explained primarily by genotype; growth rates in the mesocosms were similar to those in situ, irrespective of preconditioning. Variation in M. flabellata growth, however, was explained by both genotype and culture method such that an individual M. flabellata colony that grew well in the tanks did not necessarily perform as well on the coral trees. For both species, previous exposure to elevated temperatures in the mesocosms provided no benefit to either growth or survival during a warming event in the coral tree nursery compared to those grown in ambient temperatures. Overall, M. capitata performed better in the tree nursery with higher net growth, lower mortality, and was subject to less predation than M. flabellata. Our results show little benefit of the additional cost and time of stress-hardening these corals prior to outplanting because it is unlikely to aid resilience to future warming events. These results also suggest that selecting corals for restoration based on long-term genotype growth performance may be more effective for optimal outcomes but should be weighed against other factors, such as coral morphology, in situ nursery method, location, and other characteristics.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Havaí , Especificidade da Espécie , Genótipo , Oceanos e Mares
6.
Sci Rep ; 11(1): 12525, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108494

RESUMO

Ocean warming, fueled by climate change, is the primary cause of coral bleaching events which are predicted to increase in frequency. Bleaching is generally damaging to coral reproduction, can be exacerbated by concomitant stressors like ultraviolet radiation (UVR), and can have lasting impacts to successful reproduction and potential adaptation. We compared morphological and physiological reproductive metrics (e.g., sperm motility, mitochondrial membrane integrity, egg volume, gametes per bundle, and fertilization and settlement success) of two Hawaiian Montipora corals after consecutive bleaching events in 2014 and 2015. Between the species, sperm motility and mitochondrial membrane potential had the most disparate results. Percent sperm motility in M. capitata, which declined to ~ 40% during bleaching from a normal range of 70-90%, was still less than 50% motile in 2017 and 2018 and had not fully recovered in 2019 (63% motile). By contrast, percent sperm motility in Montipora spp. was 86% and 74% in 2018 and 2019, respectively. This reduction in motility was correlated with damage to mitochondria in M. capitata but not Montipora spp. A major difference between these species is the physiological foundation of their UVR protection, and we hypothesize that UVR protective mechanisms inherent in Montipora spp. mitigate this reproductive damage.


Assuntos
Antozoários/crescimento & desenvolvimento , Mudança Climática , Reprodução/fisiologia , Motilidade dos Espermatozoides/genética , Animais , Antozoários/genética , Recifes de Corais , Células Germinativas/crescimento & desenvolvimento , Potencial da Membrana Mitocondrial/genética , Oceanos e Mares , Motilidade dos Espermatozoides/fisiologia , Raios Ultravioleta/efeitos adversos
7.
Mol Phylogenet Evol ; 161: 107173, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33813021

RESUMO

The advent of high throughput sequencing technologies provides an opportunity to resolve phylogenetic relationships among closely related species. By incorporating hundreds to thousands of unlinked loci and single nucleotide polymorphisms (SNPs), phylogenomic analyses have a far greater potential to resolve species boundaries than approaches that rely on only a few markers. Scleractinian taxa have proved challenging to identify using traditional morphological approaches and many groups lack an adequate set of molecular markers to investigate their phylogenies. Here, we examine the potential of Restriction-site Associated DNA sequencing (RADseq) to investigate phylogenetic relationships and species limits within the scleractinian coral genus Porites. A total of 126 colonies were collected from 16 localities in the seas surrounding the Arabian Peninsula and ascribed to 12 nominal and two unknown species based on their morphology. Reference mapping was used to retrieve and compare nearly complete mitochondrial genomes, ribosomal DNA, and histone loci. De novo assembly and reference mapping to the P. lobata coral transcriptome were compared and used to obtain thousands of genome-wide loci and SNPs. A suite of species discovery methods (phylogenetic, ordination, and clustering analyses) and species delimitation approaches (coalescent-based, species tree, and Bayesian Factor delimitation) suggested the presence of eight molecular lineages, one of which included six morphospecies. Our phylogenomic approach provided a fully supported phylogeny of Porites from the Arabian Peninsula, suggesting the power of RADseq data to solve the species delineation problem in this speciose coral genus.


Assuntos
Antozoários/classificação , Antozoários/genética , Filogenia , Animais , Arábia , Teorema de Bayes , DNA Ribossômico , Genoma Mitocondrial , Análise de Sequência de DNA
8.
Sci Rep ; 11(1): 61, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420097

RESUMO

The declining reproductive viability of corals threatens their ability to adapt to changing ocean conditions. It is vital that we monitor this viability quantitatively and comparatively. Computer-assisted sperm analysis (CASA) systems offer in-depth analysis used regularly for domestic and wildlife species, but not yet for coral. This study proposes quality control procedures and CASA settings that are effective for coral sperm analysis. To resolve disparities between CASA measurements and evaluations by eye, two negative effects on motility had to be resolved, slide adhesion (procedural) and sperm dilution (biological). We showed that the addition of bovine serum albumin, or caffeine, or both to fresh sperm reduced adhesion in the CASA cassettes, improved motility and motile sperm concentration (P < 0.0001), yet these additions did not affect measurements of total sperm concentration. Diluting coral sperm reduced sperm motility (P = 0.039), especially from heat-stressed corals. We found CASA concentration counts comparable to haemocytometer and flow cytometer measures (P = 0.54). We also found that motile sperm per egg is a useful predictor of fertilisation success, using cryopreserved sperm. Standard measurements of coral reproductive characteristics inform our understanding of the impacts of climate change on reef populations; this study provides a benchmark to begin this comparative work.


Assuntos
Antozoários/fisiologia , Motilidade dos Espermatozoides , Animais , Masculino , Espermatozoides/fisiologia
9.
Sci Data ; 8(1): 35, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514754

RESUMO

The discovery of multi-species synchronous spawning of scleractinian corals on the Great Barrier Reef in the 1980s stimulated an extraordinary effort to document spawning times in other parts of the globe. Unfortunately, most of these data remain unpublished which limits our understanding of regional and global reproductive patterns. The Coral Spawning Database (CSD) collates much of these disparate data into a single place. The CSD includes 6178 observations (3085 of which were unpublished) of the time or day of spawning for over 300 scleractinian species in 61 genera from 101 sites in the Indo-Pacific. The goal of the CSD is to provide open access to coral spawning data to accelerate our understanding of coral reproductive biology and to provide a baseline against which to evaluate any future changes in reproductive phenology.


Assuntos
Antozoários/fisiologia , Animais , Oceano Índico , Oceano Pacífico , Reprodução
10.
Nat Ecol Evol ; 3(9): 1341-1350, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406279

RESUMO

Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identification of the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages-the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social and environmental drivers on the ecology of reef coral assemblages. Higher abundances of framework-building corals were typically associated with: weaker thermal disturbances and longer intervals for potential recovery; slower human population growth; reduced access by human settlements and markets; and less nearby agriculture. We therefore propose a framework of three management strategies (protect, recover or transform) by considering: (1) if reefs were above or below a proposed threshold of >10% cover of the coral taxa important for structural complexity and carbonate production; and (2) reef exposure to severe thermal stress during the 2014-2017 global coral bleaching event. Our findings can guide urgent management efforts for coral reefs, by identifying key threats across multiple scales and strategic policy priorities that might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse.


Assuntos
Antozoários , Recifes de Corais , Animais , Clima , Mudança Climática , Ecossistema , Humanos
12.
PeerJ ; 5: e3410, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28603671

RESUMO

Local-scale ecological information is critical as a sound basis for spatial management and conservation and as support for ongoing research in relatively unstudied areas. We conducted visual surveys of fish and benthic communities on nine reefs (3-24 km from shore) in the Thuwal area of the central Saudi Arabian Red Sea. Fish biomass increased with increasing distance from shore, but was generally low compared to reefs experiencing minimal human influence around the world. All reefs had a herbivore-dominated trophic structure and few top predators, such as sharks, jacks, or large groupers. Coral cover was considerably lower on inshore reefs, likely due to a 2010 bleaching event. Community analyses showed inshore reefs to be characterized by turf algae, slower-growing corals, lower herbivore diversity, and highly abundant turf-farming damselfishes. Offshore reefs had more planktivorous fishes, a more diverse herbivore assemblage, and faster-growing corals. All reefs appear to be impacted by overfishing, and inshore reefs seem more vulnerable to thermal bleaching. The study provides a description of the spatial variation in biomass and community structure in the central Saudi Arabian Red Sea and provides a basis for spatial prioritization and subsequent marine protected area design in Thuwal.

13.
Proc Biol Sci ; 283(1830)2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27170709

RESUMO

Coral spawning times have been linked to multiple environmental factors; however, to what extent these factors act as generalized cues across multiple species and large spatial scales is unknown. We used a unique dataset of coral spawning from 34 reefs in the Indian and Pacific Oceans to test if month of spawning and peak spawning month in assemblages of Acropora spp. can be predicted by sea surface temperature (SST), photosynthetically available radiation, wind speed, current speed, rainfall or sunset time. Contrary to the classic view that high mean SST initiates coral spawning, we found rapid increases in SST to be the best predictor in both cases (month of spawning: R(2) = 0.73, peak: R(2) = 0.62). Our findings suggest that a rapid increase in SST provides the dominant proximate cue for coral mass spawning over large geographical scales. We hypothesize that coral spawning is ultimately timed to ensure optimal fertilization success.


Assuntos
Antozoários/fisiologia , Animais , Recifes de Corais , Oceano Índico , Oceano Pacífico , Fotossíntese , Chuva , Reprodução , Estações do Ano , Análise Espaço-Temporal , Luz Solar , Temperatura , Vento
14.
Zookeys ; (496): 1-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25931952

RESUMO

A new scleractinian coral species, Cyphastreakausti sp. n., is described from 13 specimens from the Red Sea. It is characterised by the presence of eight primary septa, unlike the other species of the genus, which have six, ten or 12 primary septa. The new species has morphological affinities with Cyphastreamicrophthalma, from which it can be distinguished by the lower number of septa (on average eight instead of ten), and smaller calices and corallites. This species was observed in the northern and central Red Sea and appears to be absent from the southern Red Sea.

15.
F1000Res ; 4: 2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25653848

RESUMO

Coral spawning in the northern Gulf of Aqaba has been reported to be asynchronous, making it almost unique when compared to other regions in the world. Here, we document the reproductive condition of Acropora corals in early June 2014 in Dahab, in the Gulf of Aqaba, 125 km south of previous studies conducted in Eilat, Israel. Seventy-eight percent of Acropora colonies from 14 species had mature eggs, indicating that most colonies will spawn on or around the June full moon, with a very high probability of multi-species synchronous spawning. Given the proximity to Eilat, we predict that a comparable sampling protocol would detect similar levels of reproductive synchrony throughout the Gulf of Aqaba consistent with the hypothesis that high levels of spawning synchrony are a feature of all speciose coral assemblages.

16.
Zookeys ; (433): 1-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25152672

RESUMO

A new scleractinian coral species, Pachyseris inattesa sp. n., is described from the Red Sea. Despite a superficial resemblance with some species in the agariciid genus Leptoseris with which it has been previously confused, P. inattesa sp. n. has micro-morphological characters typical of the genus Pachyseris. This genus, once part of the Agariciidae, is comprised of five extant species and is widely distributed throughout the tropical Indo-Pacific. It is currently incertae sedis as a result of recent molecular analysis and appears to be closely related to the Euphylliidae. A molecular phylogenetic reconstruction including P. inattesa sp. n., the genus type species P. rugosa, and P. speciosa, all present in the Red Sea, was performed using the mitochondrial intergenic spacer between COI and 16S-rRNA. The results confirm that P. inattesa sp. n. is a monophyletic lineage closely related to the other Pachyseris species examined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA