Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 11(11)2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683644

RESUMO

BACKGROUND: Hantavirus disease in humans is rare but frequently lethal in the Neotropics. Several abundant and widely distributed Sigmodontinae rodents are the primary hosts of Orthohantavirus and, in combination with other factors, these rodents can shape hantavirus disease. Here, we assessed the influence of host diversity, climate, social vulnerability and land use change on the risk of hantavirus disease in Brazil over 24 years. METHODS: Landscape variables (native forest, forestry, sugarcane, maize and pasture), climate (temperature and precipitation), and host biodiversity (derived through niche models) were used in spatiotemporal models, using the 5570 Brazilian municipalities as units of analysis. RESULTS: Amounts of native forest and sugarcane, combined with temperature, were the most important factors influencing the increase of disease risk. Population at risk (rural workers) and rodent host diversity also had a positive effect on disease risk. CONCLUSIONS: Land use change-especially the conversion of native areas to sugarcane fields-can have a significant impact on hantavirus disease risk, likely by promoting the interaction between the people and the infected rodents. Our results demonstrate the importance of understanding the interactions between landscape change, rodent diversity, and hantavirus disease incidence, and suggest that land use policy should consider disease risk. Meanwhile, our risk map can be used to help allocate preventive measures to avoid disease.


Assuntos
Infecções por Hantavirus/transmissão , Síndrome Pulmonar por Hantavirus/transmissão , Roedores/virologia , Análise Espaço-Temporal , Zoonoses/virologia , Animais , Brasil/epidemiologia , Clima , Doenças Transmissíveis Emergentes , Reservatórios de Doenças/virologia , Ecossistema , Fazendeiros , Orthohantavírus , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/prevenção & controle , Síndrome Pulmonar por Hantavirus/epidemiologia , Síndrome Pulmonar por Hantavirus/prevenção & controle , Humanos , Saúde Pública
2.
PLoS Negl Trop Dis ; 13(8): e0007655, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31404077

RESUMO

Several viruses from the genus Orthohantavirus are known to cause lethal disease in humans. Sigmodontinae rodents are the main hosts responsible for hantavirus transmission in the tropical forests, savannas, and wetlands of South America. These rodents can shed different hantaviruses, such as the lethal and emerging Araraquara orthohantavirus. Factors that drive variation in host populations may influence hantavirus transmission dynamics within and between populations. Landscape structure, and particularly areas with a predominance of agricultural land and forest remnants, is expected to influence the proportion of hantavirus rodent hosts in the Atlantic Forest rodent community. Here, we tested this using 283 Atlantic Forest rodent capture records and geographically weighted models that allow us to test if predictors vary spatially. We also assessed the correspondence between proportions of hantavirus hosts in rodent communities and a human vulnerability to hantavirus infection index across the entire Atlantic Forest biome. We found that hantavirus host proportions were more positively influenced by landscape diversity than by a particular habitat or agricultural matrix type. Local small mammal diversity also positively influenced known pathogenic hantavirus host proportions, indicating that a plasticity to habitat quality may be more important for these hosts than competition with native forest dwelling species. We found a consistent positive effect of sugarcane and tree plantation on the proportion of rodent hosts, whereas defaunation intensity did not correlate with the proportion of hosts of potentially pathogenic hantavirus genotypes in the community, indicating that non-defaunated areas can also be hotspots for hantavirus disease outbreaks. The spatial match between host hotspots and human disease vulnerability was 17%, while coldspots matched 20%. Overall, we discovered strong spatial and land use change influences on hantavirus hosts at the landscape level across the Atlantic Forest. Our findings suggest disease surveillance must be reinforced in the southern and southeastern regions of the biome where the highest predicted hantavirus host proportion and levels of vulnerability spatially match. Importantly, our analyses suggest there may be more complex rodent community dynamics and interactions with human disease than currently hypothesized.


Assuntos
Biodiversidade , Florestas , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/virologia , Orthohantavírus/isolamento & purificação , Roedores/crescimento & desenvolvimento , Roedores/virologia , Agricultura/métodos , Animais , Reservatórios de Doenças/virologia , Transmissão de Doença Infecciosa , Ecossistema , Orthohantavírus/classificação , Infecções por Hantavirus/transmissão , Humanos , Roedores/classificação , América do Sul/epidemiologia , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA